It is often the case that we want to know how we can manipulate a class of objects and still end up with something in the same class (see Group Theory/Abstract Algebra). We call these manipulations (operations) **closed** on a class if the above property holds.

Ex: The integers are closed over addition.

\[x, y \in \mathbb{Z}, \quad x + y \in \mathbb{Z}. \]

The regular languages are closed under a number of interesting properties. We’ve seen a few in exercises so far for specific cases. Here, we’ll formally prove three particularly important closure properties.

Thm: The regular languages are closed under concatenation.

Pf: Let \(A, B \) be regular languages. Then there are NFAs \(N_A \) and \(N_B \) which accept \(A, B \) respectively. We construct a new NFA \(N \) to recognize \(A \cdot B \) as follows.

[Diagram of an NFA construction for concatenation]
Let \(N_A = (Q_A, \Sigma_A, S_A, \delta_A, F_A) \) and \(N_B = (Q_B, \Sigma_B, S_B, \delta_0, F_B) \).

Define \(N = (Q_A \cup Q_B, \Sigma_A \cup \Sigma_B, S, \delta_0, A \cup B) \), where for \(c \in (\Sigma_A \cup \Sigma_B)_e \) and \(q \in Q_A \cup Q_B \),

\[
\delta(q, c) = \begin{cases}
\delta_A(q, c) & q \in Q_A \setminus F_A \quad \text{and} \quad c \in (\Sigma_A)_e \\
\delta_A(q, c) & q \in F_A \quad \text{and} \quad c \in \Sigma_A \\
(q_0, B) \delta_0 A(q, c) & q \in F_A \quad \text{and} \quad c = \epsilon \\
\delta_B(q, c) & q \in Q_B \quad \text{and} \quad c \in (\Sigma_B)_e
\end{cases}
\]

It remains to show \(L(N) = A \cup B \).

Let \(w \in L(N) \). Then \(\exists \) an accepting path \(p \) from \(q_0 \) to some \(q_F \in F_B \) on input \(w \). By construction, \(q_0, B \) must be in \(p \) and \(p \) gets to \(q_0, B \) via an \(\epsilon \) transition from a state \(q_F' \in F_A \).

Thus \(p = rs \) where \(r \) is a path starting from \(q_0, A \) and ending in \(q_F' \) while \(s \) is a path starting from \(q_0, B \) and ending at \(q_F \).

As such, \(r \) accepts some string in \(A \) and \(s \) accepts some string in \(B \), hence \(w \in A \cup B \).

Now let \(w \in A \cup B \). Similarly to before, \(w = uv \) such that \(u \in A \) and \(v \in B \), so \(\exists \) accepting paths \(r \) and \(s \) for \(u \) and \(v \) in \(N_A \) and \(N_B \) respectively. In \(N \), \(r \) and \(s \) is bridged via an \(\epsilon \) transition by construction, so \(rs \) is a path in \(N \). Moreover, since \(s \) end in a state in \(F_B \), \(rs \) is an accepting path, thus \(rs \in L(N) \).
The regular languages are closed under union.

Proof Let \(A, B \) be regular languages. Then there are NFAs \(N_A = (Q_A, \Sigma_A, S_A, \delta_A, F_A) \) and \(N_B = (Q_B, \Sigma_B, S_B, \delta_B, F_B) \) such that \(L(N_A) = A \) and \(L(N_B) = B \).

We construct NFA \(N \) to accept \(A \cup B \) as follows.

![Diagram of NFA N]

We define \(N = (Q_A \cup Q_B, \Sigma_A \cup \Sigma_B, \delta, \epsilon_0, F_A \cup F_B) \), where for \(q \in Q_A \cup Q_B \) and \(c \in (\Sigma_A \cup \Sigma_B)_\epsilon \):

\[
\delta(q, c) = \begin{cases}
\delta_A(q, c) & q = \epsilon_0 \text{ and } c = \epsilon \\
\delta_B(q, c) & q \in Q_B \text{ and } c \in (\Sigma_B)_\epsilon \\
\delta_A(q, c) & q \in Q_A \text{ and } c \in (\Sigma_A)_\epsilon
\end{cases}
\]

It is routine to verify that \(L(N) = A \cup B \).

The regular languages are closed under the (Kleene) star.

Proof Let \(A \) be a regular language. Then there is an NFA \(N_A = (Q_A, \Sigma_A, S_A, \delta_A, F_A) \) such that \(L(N_A) = A \).

We construct NFA \(N \) to accept \(A^* \) as follows.
We define \(N = (Q_A, \Sigma, \delta, q_0, F_A, \Sigma, q_0, F_A) \) where for \(q \in Q_A \cup \Sigma \), and \(c \in (\Sigma_A)^e \)

\[
\delta(q, c) = \begin{cases}
\delta(q, c) & q \in Q_A \cap F_A \\
\delta(q, c) & q \in F_A \text{ and } c \in \Sigma_A \\
\delta(q, c) \cup \delta(q, c) & q \in F_A \text{ and } c = \varepsilon \\
\delta(q, c) & q = q_0 \text{ and } c = \varepsilon.
\end{cases}
\]

Note that because we must accept \(\varepsilon \) and don't know if \(N_A \) contains a cycle starting at \(q_A \), we must add accepting start state \(q_0 \).

From here it is routine to verify that \(L(N) = A^* \).

Def: For a language \(A \) over an alphabet \(\Sigma \),

\[
A^* = \{ w_1 w_2 w_3 \ldots w_k \mid \forall i, w_i \in \Sigma^* \text{ and } 0 \leq k \}
\]

\(\text{when } k = 0, \text{ we get the empty string} \)

For \(w \in \Sigma^* \), \(w^* = \varepsilon w_3^* \).