Theorem A language is regular iff an NFA accepts it.

Proof We need to show two things.

1. \(\forall A \) regular \(\exists \) NFA \(N \) such that \(L(N) = A \)
2. \(\forall \) NFA \(N \), \(L(N) \) is regular.

For (1), \(A \) regular \(\Rightarrow \exists \) DFA \(D \) such that \(L(D) = A \).

But all DFAs are NFAs, so \(D \) is an NFA with \(L(D) = A \), and we’re done.

For (2), let \(N = (Q, \Sigma, S, q_0, F) \) be an NFA. It suffices to construct a DFA \(D \) such that \(L(D) = L(N) \) (i.e. \(D \) simulates \(N \)).

Let \(D = (Q', \Sigma, S', q'_0, F') \) be a DFA such that

- \(Q' = 2^Q \)
- \(q'_0 = \pi(q_0) \)
- \(F' = \{ q' \in Q' \mid \exists q \in F : q \subseteq q' \} \)
- \(\delta'(q', a) = R(\pi(q), S(p, a)) \)

where \(R(S) \) is the set of all states reachable from states in \(S \) via no input.

Briefly we explicitly show \(L(D) = L(N) \) via a lemma.

Definition We define iterated transition function \(\delta^* : Q \times \Sigma^* \rightarrow Q \) to be for \(\omega \in \Sigma^* \) and \(a \in \Sigma \)

\[\delta^*(q, \epsilon) = q \]

\[\delta^*(q, aw) = \delta(\delta^*(q, w), a) \]

Similarly for \(\delta^* : \pi(Q) \times \Sigma^* \rightarrow \pi(Q) \)

\[\delta^*(q, \epsilon) = R(q) \]

\[\delta^*(q, aw) = R(\bigcup_{p \in \delta^*(q, w)} \delta(p, a)) \]

where \(R \) is as defined above.
Lemma For any input $w \in \Sigma^*$, $S^*(q_0, w) = S^*(q_0', w)$.

First notice that if this lemma is true, then the set of all possible states N could be in after processing w is exactly the single state D is in. This would imply $\forall q \in F, q \in S^*(q_0, w)$ iff $q \in S^*(q_0', w)$, hence N accepts w iff D accepts w, thus $L(N) = L(D)$.

It only remains to prove the lemma.

Proof This is clearly true by inspection/construction/definition.

Cor For every NFA N, there is a DFA D such that $L(N) = L(D)$.

As an aside, notice that we can remove the non from nondeterministic via an exponential increase in memory. This will be important later.