In general, it's usually difficult to determine interesting properties of the language of a computational device. For DFAs (and NFAs), however, many typically challenging properties are within reach.

For each problem below, write an algorithm that:
- Given a DFA D, determines if $L(D) = \emptyset$.
- Given a DFA D, determines if $L(D) = \Sigma^*$.
- Given a DFA D and $w \in \Sigma^*$, determines if $w \in L(D)$.
- Given a DFA D, determines if D is the unique minimal-state DFA that accepts $L(D)$.
- Given two DFAs D_1, D_2, determines if $L(D_1) = L(D_2)$.

(Hint: One of these is relatively very difficult)

1) If there is a path from the start state to an accepting state, return false, otherwise return true.

2) If there is a path to a non-accepting state, return false.
 Otherwise return true.

3) Simulate $D(w)$.
 If it ends in an accepting state, return true. Otherwise return false.

5) Minimize D_1 and D_2.
 If they are the same DFA, return true.
 Otherwise, return false.
4) If D has any unreachable states, return false.

If D has any states from which no accepting state is reachable, return false.

If after removing all unreachable or dead states, there exist two indistinguishable states, return false.

Otherwise return true.

What makes 2 states indistinguishable?

Given states p, q ∈ Q for DFA D = (Q, Σ, δ, q₀, F), we say p and q are distinguishable if ∃ w ∈ Σ*; if δ*(p, w) = p' and δ*(q, w) = q', then p' ∈ F ∧ q' ∉ F or p' ∉ F ∧ q' ∈ F.

In other words, there is some input where p and q behave differently. If they are not distinguishable, they are indistinguishable.

If we repeatedly merge indistinguishable states, we will eventually arrive at a minimal DFA accepting the same language.

Thm) Let D be a DFA. Then ∃ a DFA D' = (Q', Σ, δ', q₀', F') such that L(D) = L(D') and for any other DFA D'' = (Q'', Σ, δ'', q₀'', F'') such that L(D') = L(D''), |Q'| ≤ |Q''|. Moreover, the algorithm implied by (4) above produces D' from D.

Pf) Delayed until we have more tools for a better version of this theorem.