Nondeterminism is the introduction of "chance" or the "multiverse" into our machines. This is mostly syntactic sugar right now (see DFA/NFA Equivalence) but foreshadows important topics later.

Recall that DFAs are deterministic in the sense that how it processes input at any given time is fully determined at "compilation time", whereas NFA behavior is determined at "runtime".

$$L(M) = \sum_{w \in \Sigma^*} |2|w| \lor 3|w|$$

DFAs accept if the final state of the unique path through it is specified by its input is an accepting state.

NFA accept if the final state of a path through it as specified by its input is an accepting state.

$$L(N) = \{0^{2n} \mid n \in \mathbb{N}\} \cup \{0^{3n} \mid n \in \mathbb{N}\}$$
Notice two key features of NFAs in N. We allow empty ε-transitions which occur spontaneously without consuming an input. We also allow multiple identical transitions out of a state.

In N, we test if either 2 divides the input length or if 3 does separately. But since N is an NFA, if either path ends in an accepting state, we accept.

Ex) Prove $L(M) = L(N)$.

We do so in the usual way by showing $L(M) \subseteq L(N)$ and $L(N) \subseteq L(M)$ (double set inclusion).

Let $w \in L(M)$. Then $2|wl$ or $3|wl$. Thus $w = 0^{2n}$ or $w = 0^{3n}$ for some $n \in \mathbb{N}$. Hence $w \in L(N)$.

Now let $w \in L(N)$. Then $w = 0^{2n}$ or $w = 0^{3n}$ for some $n \in \mathbb{N}$.

Case $w = 0^{2n}$: Then $1wl = 2n$ and $2|2n$.

Case $w = 0^{3n}$: Then $1wl = 3n$ and $3|3n$.

In either case $w \in L(M)$.

Formal NFA

A non-deterministic finite automaton M is a 5-tuple

$M = (Q, \Sigma, \delta, q_0, F)$,

where Q, Σ, δ, q_0, and F are states, alphabet, transition function, start state, and accepting states, respectively.

$\delta : Q \times \Sigma \varepsilon \rightarrow \mathcal{P}(Q)$

M accepts a string w if there exists a path $p = s_1 s_2 s_3 \ldots s_k$ where $k \in \mathbb{N}$, $s_1 = q_0$, $s_k \in F$, and for each i, $s_i s_{i+1} \in \delta(s_i, a)$ where a is the next unprocessed input or $s_{i+1} \in F(s_i, \varepsilon)$. M rejects w otherwise.
Draw an NFA for each of the following languages:

1. \(\{0w1 \mid w \in \Sigma^* \} \quad (\Sigma = \{0, 1\}) \)
2. \(\{x \text{ abba y} \mid x, y \in \Sigma^* \} \quad (\Sigma = \{a, b\}) \)
3. \(\{xy = 1 \mid x, y \in \mathbb{Z}_5^+ \text{ are increasing}\} \quad (\Sigma = \{0, 1, 2, 3, 4\}) \)
4. \(\{xy = 1 \mid x, y \in \mathbb{Z}_5^+ \text{ are decreasing}\} \quad (\Sigma = \{0, 1, 2, 3, 4\}) \)

Note: It is not unusual for the absence of a transition to mean either immediate halt and reject or go to an implied state that consumes all input and then rejects.

Notice that in each example we can implement a \(w \in \Sigma^* \) requirement simply with a \(* \) state and let the nondeterminism figure it out from there.
4) Reverse the transitions of (3) and swap the start and accepting states.

(4) above highlights an interesting property. The regular languages are closed under reversal.