We can express regular languages using regular expressions, which consist of just three operations (proof to follow): union, concatenation, and Kleene star.

- $01^* = \text{strings starting with 0 followed by as many 1's as desired}$
- $a(a+b)^*c = \text{strings starting with a, ending in c, and with as many a's or b's in between as desired}$

Note that union is often written as the analogous | (or) from programming, i.e. $a(a\cup b)^*c = a(a/b)^*c$.

Similarly, we usually never write ϵ and leave it implicit.

Also, when we write 0 or a, these are shorthand for $\{0^k : k \geq 0\}$ and $\{a^k : k \geq 0\}$ since these are operations on sets.

Formal Definition of Regular Expressions

We say R is a regular expression if R is (on an alphabet Σ)
- a for some $a \in \Sigma$
- ϵ
- ϕ
- $R_1 \cup R_2$, where R_1, R_2 are regular expressions
- $R_1 \circ R_2$,
- R_i^*, where R_i is a regular expression
We now prove regular expressions characterize the regular languages.

(Thm) If a language is described by a regular expression, then it is regular.

Pf) Given a regular expression \(R \), we construct an NFA \(N \) whose language \(L(N) = R \) (recall \(R \) is a set of strings too).

\(R \) falls into one of six cases:

1) \(R = a \) for some \(a \in \Sigma \).

\[q_0 \rightarrow \overset{a}{q_0} \]

2) \(R = \varepsilon \)

\[q_0 \]

3) \(R = \emptyset \)

\[q_0 \]

4) \(R = R_1 \cup R_2 \)

5) \(R = R_1 \circ R_2 \)

6) \(R = R_1^* \)

For cases 4-6, we already constructed an NFA that accepts those languages (we assume \(R_1, R_2 \) have an equivalent NFA as they are smaller problems).
If a language is regular, it is described by a regular expression.

We sketch a proof here that is otherwise very technical despite its clear intuition.

A generalized nondeterministic finite automaton (GNFA) is an NFA except we allow REs on its transitions. These transitions consume a matching input, and like an NFA, the GNFA accepts an input if a path through it ends in an accepting state.

First note that a DFA is an GNFA. If a transition has more than one character, we union them together.

Given a DFA D, we add 2 states to D, a new start state q'_0 with an ε transition to the old state state q_0 and a new unique accepting state q_f with an ε transition to it from every old accepting state in F_D.

Accepts the language given by 0^*101^*.

These are no longer accepting.
We add to D wherever a transition between 2 states is absent, with the RE \emptyset.

We now iteratively remove states from A_0 (the original set of states) until only the 2 new states are left. The transition between them will be the RE we want.

To do this, pick a state. Remove it from the graph. We then patch the dangling transitions by concatenating them along the appropriate path and unioning each path ending in the same state passing through the old vertex.

Ex:

[Diagram of a DFA with states A, B, C, D, and transitions labeled with symbols like ϵ, 0, 1, and 01^*.]

Remove A

[Diagram of the DFA after removing state A with transitions labeled as B→C, B→A→C, B→A→B, and C→A→B.]

Both have \emptyset on the path, so the paths both produce \emptyset.

\[\emptyset \to A \to B \]
When we reduce the GNFA to 2 states, as previously stated, we have the RE we want and we're done.

\[L(D) = (010)^* 01 \]

\[\text{Make GNFA in prescribed form} \]

\[\text{Remove B} \]

\[\text{Remove C} \]

\[\text{Remove A} \]

Lo' and behold, \[L(D) = \text{the RE} \ (010)^* 01. \]