Problem 1. Prove using induction that for all positive integers \(n\)
\[
\sum_{i=0}^{n} 6 \cdot 7^i = 7^{n+1} - 1.
\]

Problem 2. Prove that if \(a, b, c > 0\), then if \(ax^2 + bx + c = 0\) has real solutions, both solutions are negative.

Problem 3. Prove that \(n^5 - n\) is divisible by 10 for all integers \(n\). (Hint: You can use induction, make a clever residue argument, or use a more exotic approach.)

Problem 4. Draw a DFA or an NFA that accepts the language
\[
A = \{ \omega \in \{0, 1\}^* \mid \text{The number of 1's in } \omega \text{ is divisible by 3} \}.
\]

Problem 5. Draw a DFA or an NFA that accepts the language
\[
B = \{ \omega \in \{0, 1\}^* \mid \text{The fourth and second to last bit of } \omega \text{ is 1} \}.
\]

Problem 6. Prove that the DFA below accepts the language
\[
C = (00|11)^*.
\]

Problem 7. Let \(\Sigma\) be an arbitrary alphabet. Given a language \(L \subseteq \Sigma^*\), the even part of \(L\) is the set
\[
E(L) = \{ \omega \in L \mid |\omega| \text{ is even} \}.
\]
Prove or disprove that if \(L\) is regular, then \(E(L)\) is also regular.

Problem 8. Prove that the class of regular languages is closed under intersection.

Problem 9.

a) Prove that any finite set of strings is regular.
b) A countable union is the union of a countable number of sets, whether finite or countably infinite. Prove or disprove that the set of regular languages is closed under countable unions.

Problem 10.

a) Prove that the powers of 2 base 1, i.e.

\[\{1^n \mid n = 2^k \text{ for } k \in \mathbb{N}\}, \]

is irregular.

b) Prove that the powers of 2 base 2, i.e.

\[\{\omega \in \{0, 1\}^* \mid \omega \text{ is the base 2 representation of a power of 2}\}, \]

is regular.

c) Prove that the powers of 2 base 10, i.e.

\[\{\omega \in \mathbb{Z}_{10}^* \mid \omega \text{ is the base 10 representation of a power of 2}\}, \]

is irregular.