Problem 1. We define the symmetric difference of two sets A and B, written $A \bigtriangleup B$, to be the set of elements in either A or B but not both. Formally, we state

$$A \bigtriangleup B = \{g \mid g \in A \oplus g \in B\}.$$

Prove that the following identity holds:

$$A \bigtriangleup B = (A \cap \overline{B}) \cup (\overline{A} \cap B).$$

Solution 1. To prove

$$A \bigtriangleup B = (A \cap \overline{B}) \cup (\overline{A} \cap B),$$

we prove that each set is included in the other.

First let $x \in A \bigtriangleup B$. By definition, $x \in A \oplus x \in B$, hence either $x \in A$ and $x \notin B$ or $x \notin A$ and $x \in B$. But then $x \in A \cap \overline{B}$ or $x \in \overline{A} \cap B$ respectively, thus $x \in (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

New let $x \in (A \cap \overline{B}) \cup (\overline{A} \cap B)$. Then either $x \in A \cap \overline{B}$ or $x \in \overline{A} \cap B$. This means $x \in A$ and $x \notin B$ or $x \notin A$ and $x \in B$ respectively, hence $x \in A \oplus B$. Therefore $x \in A \bigtriangleup B$. \(\square\)

Problem 2. Pascal’s triangle is collection of binomial coefficients with a remarkable number of interesting properties. The closed form expression for each entry is simply

$$P(n, k) = \binom{n}{k}.$$

We depict this visually below.

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
...
```

Observing adjacent rows readily reveals that a recursive definition of $P(n, k)$ exists:

$$P(n, k) = \begin{cases}
1 & \text{k = 0 or k = n} \\
P(n - 1, k - 1) + P(n - 1, k) & \text{0 < k < n.}
\end{cases}$$
a) Prove algebraically that for all \(n \in \mathbb{N} \) and \(0 < k < n \),
\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.
\]

b) Prove using induction and the recursive definition of \(P(n, k) \) given above that
\[
P(n, k) = \binom{n}{k}.
\]

Solution 2.

a) For \(n \in \mathbb{N} \) and \(0 < k < n \) (note that when \(n < 2 \), the statement is vacuously true), we have
\[
\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} = \frac{(n-1)!(n-k)(n-1)!}{k!(n-1)!(n-k)!} + \frac{(n-1)!(k-1)!}{(k-1)!k!(n-k)!} = \frac{(n-k)(n-1)! + k(n-1)!}{k!(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}.
\]

b) Define the statement
\[
S(n) := \text{For } 0 \leq k \leq n, P(n, k) = \binom{n}{k}.
\]

We prove via induction that \(S(n) \) is true for all \(n \in \mathbb{N} \).

For our base case, when \(n = 0 \), \(P(0, 0) = 1 = \binom{0}{0} \), hence \(S(0) \) holds.

We now assume that \(S(n) \) is true for some \(n \in \mathbb{N} \) and prove that \(S(n+1) \) is necessarily true as well. If \(k = 0 \), then by definition, \(P(n+1, 0) = 1 = \binom{n+1}{0} \). Similarly, if \(k = n+1 \), then \(P(n+1, n+1) = 1 = \binom{n+1}{n+1} \).

If instead \(0 < k < n+1 \), then by definition \(P(n+1, k) = P(n, k) + P(n, k-1) \). But by assumption, we can replace the right hand side with
\[
P(n+1, k) = \binom{n}{k} + \binom{n}{k-1}.
\]

In part a, however, we showed that the right hand side is simply
\[
P(n+1, k) = \binom{n+1}{k}.
\]

As such, we’ve shown that \(S(n+1) \) is true.

\[\square\]
Problem 3. Define I_S to be the identity function for any arbitrary set S (i.e. $I(s) = s$ for every $s \in S$).

For a function $f : X \to Y$, its inverse function, written $f^{-1} : Y \to X$, is also known as a two-sided inverse. This is because $f^{-1} \circ f = I_X$ and $f \circ f^{-1} = I_Y$. This leads us to posit the existence of one-sided inverses.

A left inverse of f is a function $g : Y \to X$ such that $g \circ f = I_X$. Similarly, a right inverse of f is a function $h : Y \to X$ such that $f \circ h = I_Y$. For the following problems, let $f : X \to Y$ be a function and assume that $X, Y \neq \emptyset$.

a) Prove that f is injective if and only if it has a left inverse.

b) Prove that f is surjective if and only if it has a right inverse.

c) Prove that f is bijective if and only if it has a two-sided inverse.

d) Prove that if f has a two-sided inverse, it is unique.

Solution 3.

a) Suppose that f is injective.

We define the function $l : Y \to X$ on input $y \in Y$ as follows. If $y \in f(X)$, then since f is injective, there exists a unique $x \in X$ such that $f(x) = y$. In this case, let $l(y) = x$. This gives us the useful property that for all $x \in X$, clearly $l(f(x)) = x$, hence $l \circ f = I_X$.

To make l a total function, fix $x_0 \in X$. If $y \notin f(X)$, then let $l(y) = x_0$. l is clearly a left inverse of f.

Now suppose that f has a left inverse l. We know $l \circ f = I_X$. Now suppose that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$. Then we have $l(f(x_1)) = l(f(x_2))$, which implies $x_1 = x_2$ since $l \circ f$ is the identity function. □

b) Suppose that f is surjective.

We define the function $r : Y \to X$ on input $y \in Y$ as follows. Since f is a surjection, there exists an $x \in X$ such that $f(x) = y$. Let $r(y) = x$. Then we have $f(r(y)) = x$ for every y, hence $f \circ r = I_Y$. Thus r is a right inverse of f.

Now suppose that f has a right inverse r. It suffices to show that for every $y \in Y$, there is an $x \in X$ such that $f(x) = y$.

Fix $y \in Y$. We know that $f \circ r = I_Y$. In other words, $f(r(y)) = y$. But $r(y) \in X$, so we’re done. □

c) Suppose that f is a bijection. Then by part a, f has a left inverse l. Similarly, by part b, f has a right inverse r. We will show that $l = r$.

By definition, we know that $l \circ f = I_X$ and $f \circ r = I_Y$. But then we can write

$$ l = l \circ I_Y = l \circ (f \circ r) = (l \circ f) \circ r = I_X \circ r = r, $$

hence $l = r$.

Now suppose that f has a two-sided inverse g. Then g is both a left inverse and a right inverse. By part a, f must be injective. By part b, f must be surjective. Therefore f is a bijection. □
d) It suffices to show that if \(f \) has two two-sided inverses \(g \) and \(h \), then \(g = h \).

Suppose that \(f \) has two two-sided inverses \(g \) and \(h \). Then we have

\[
f \circ g = f \circ h = I_Y
\]

and

\[
g \circ f = h \circ f = I_X.
\]

But we can then write

\[
g \circ (f \circ g) = g \circ (f \circ h),
\]

which is the same as

\[
(g \circ f) \circ g = (g \circ f) \circ h.
\]

But \(g \circ f \) is the identity function! As such, we have

\[
I_X \circ g = I_X \circ h,
\]

or in other words, \(g = h \). \(\square \)

Problem 4. In boolean logic, a *majority* function is a boolean function of \(n \) binary inputs \(f_n : \{0,1\}^n \to \{0,1\} \) such that \(f_n = 1 \) when at least half of its inputs are 1 and \(f_n = 0 \) otherwise.

a) Write a boolean expression (a formula in terms of \(\land, \lor, \) etc...) for \(f_3 \).

b) Write a boolean expression for \(f_4 \) using \(f_3 \).

Solution 4.

a) \(f_3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \)

b) \(f_4(x_1, x_2, x_3, x_4) = f_3(x_1, x_2, x_3) \lor f_3(x_1, x_2, x_4) \lor f_3(x_1, x_3, x_4) \lor f_3(x_2, x_3, x_4) \)

Problem 5. A *graph* is finite set of vertices \(V \) paired with a set of edges \(E \) where each (undirected) edge is between two vertices. Prove that the number of vertices with an odd number of edges is even.

Solution 5. Let \(V \) be the set of vertices. The sum of the degree of all vertices must be even since each edge adds 1 degree to 2 vertices. However,

\[
\sum_{v \in V} \deg(v) = \sum_{\deg(v) \text{ odd}} \deg(v) + \sum_{\deg(v) \text{ even}} \deg(v).
\]

The latter of the two right sums is obviously even, but then this implies that the sum of the degree of vertices with odd degree must also be even since otherwise an even number plus and odd number is odd. Similarly, since this sum of odd numbers is even, it follows that there must be an even number of them. \(\square \)