Problem 1. Consider the DFA $D = (Q, \Sigma, \delta, q_0, F)$ given below.

![Diagram of DFA](image)

a) For each of the following, fill in the blank (you may draw a table for δ):

- $Q =$
- $\delta =$
- $q_0 =$
- $F =$

b) What language $L(D)$ does D accept?

c) Prove that $L(D)$ is the set you specified in part (b).

Problem 2. Consider the NFA $N = (Q, \Sigma, \delta, q_0, F)$ given below.

![Diagram of NFA](image)

a) For each of the following, fill in the blank (you may draw a table for δ):

- $Q =$
- $\delta =$
• $q_0 = \emptyset$
• $F = \emptyset$

b) What language $L(N)$ does N accept?

c) Prove that $L(N)$ is the set you specified in part (b).

Problem 3. For each of the following languages, give a DFA that accepts it. Unless otherwise specified, you may assume $\Sigma = \{0, 1\}$.

a) $L_1 = \{\omega \in \Sigma^* | \omega \text{ is of the form } 0^*1^*\}$

b) $L_2 = \overline{L_1}$

c) $L_3 = \{\omega \in \Sigma^* | \text{ every even bit of } \omega \text{ is a 0}\}$

d) $L_4 = \{\omega \in \Sigma^* | \omega \text{ has even length if it starts with } 0 \text{ and has odd length if it starts with } 1\}$

e) $L_5 = \{\omega \in \Sigma^* | \omega \text{ is any string except } 0 \text{ or } 1\}$

f) $L_6 = 0^*1(0^*10^*1)^*$

Problem 4. For each of the following languages, give an NFA that accepts it subject to (if any) the provided state restriction. Unless otherwise specified, you may assume $\Sigma = \{0, 1\}$.

a) With at most 2 states, $L_7 = \{1\}$

b) With at most 3 states, $L_8 = 0^*1^+0^*$

c) With at most 3 states, $L_9 = 1^*(001^+)^*$

d) $L_{10} = \{x1^*y | x, y \in \Sigma^*\}$

e) $L_{11} = \{\omega \in Z_4^* | \omega \text{ contains at most one of each } a \in Z_4\}$

f) Using as few states as possible, $L_{12} = \{\omega^* | \omega \in Z_4^* \text{ and } \omega \text{ contains at most one of each } a \in Z_4\}$

Problem 5.

a) Prove that every NFA can be converted into an NFA with a single accept state.

b) Prove that every DFA can be converted into a DFA with a single accept state.