Problem 1. Define the alphabet $\Sigma = \mathbb{N}_2$. For each of the following, give a regular expression which fully characterizes the language.

a) Any string except 101010.

b) Any string ending in 110.

c) Any string which can be broken into a sequence of the following strings: 000, 111, 101, or 010.

d) Any string of even length starting with 0 or any string of odd length starting with 1.

e) Any string not containing the substrings 11 or 000.

Problem 2. For a string $\omega \in \Sigma^*$, we define the reverse of ω, written ω^R, to be ω with its sequence reversed. In other words, if

$$\omega = a_1 a_2 \ldots a_n$$

for $a_1, a_2, \ldots, a_n \in \Sigma$, then

$$\omega^R = a_n \ldots a_2 a_1.$$

For a language $A \subseteq \Sigma^*$, we can define its reverse

$$A^R = \{ \omega^R | \omega \in A \}$$

to be the reverse of every string in A.

Prove that the class of regular languages is closed under the reverse operator.

Problem 3. Let A be language of all even length strings of $\{0, 1\}^*$. Note that A is regular.

a) Prove or disprove that $A \circ A^R$ is regular.

b) Prove or disprove that $\hat{A} = \{ \omega \omega^R | \omega \in A \}$ is regular.

c) Give a brief intuitive explanation in your own words of why one is regular while the other is not.
Problem 4. Let Σ be an alphabet. Recall that the set of all languages over Σ is the family of all possible selections/exclusions of strings. In other words, it is the power set of the set of all strings, $\mathcal{P}(\Sigma^*)$. Notice that the set of all languages is uncountable even when $|\Sigma| = 1$. Also observe that the set of all regular languages \mathcal{R} over Σ is a subset of $\mathcal{P}(\Sigma^*)$. Prove that \mathcal{R} is countable. (Hint: you do not need to use diagonalization.)

Problem 5. We characterized a regular expression R over an alphabet Σ as matching one of the following (sometimes recursive) conditions:

1. $R = a$ for some $a \in \Sigma$
2. $R = \epsilon$
3. $R = \emptyset$
4. $R = R_1 | R_2$, where R_1 and R_2 are both regular expressions
5. $R = R_1 \circ R_2$, where R_1 and R_2 are both regular expressions
6. $R = R_1^*$, where R_1 is a regular expression.

Other expressions can be characterized in a similar manner. One major example is the arithmetic expressions. For example, if E is an arithmetic expression, we would expect (E) to also be an arithmetic expression but not $(E \text{ or } E)$.

Define the alphabet $\Sigma = \mathbb{Z}_{10} \cup \{+, -, *, /, (,)\}$ ($ -$ here may be binary or unary).

a) Give a characterization similar to the characterization of regular expressions above for the arithmetic expressions.

b) Prove that the arithmetic expressions are not regular.