The context-free languages are used far less often than the regular languages or the most general computational level. Nonetheless, they are worth at least a quick look. These languages cover those like \(0^n1^n1^n2^n0^n3^n \). Note that all regular languages will be context-free.

There are two ways we describe context-free languages. The first is with context-free grammars, an analog to regular expressions. Compilers and parsers typically have a context-free grammar for their language, although some are context-sensitive or worse.

Ex)

\[
\begin{align*}
A & \rightarrow 0A1 \\
A & \rightarrow \varepsilon \\
B & \rightarrow AA
\end{align*}
\]

Starting with just \(A \), we get

\[
A \rightarrow \varepsilon \text{ or } 0A1 \rightarrow 01 \text{ or } 00A11 \rightarrow \ldots
\]

Starting with \(B \), we get \(0^n1^n0^n1^n \).

A grammar consists of substitution rules (also known as productions), variables like \(A \), and terminals like \(0 \) or \(1 \). The sequence \(A \rightarrow 0A1 \rightarrow 00A11 \rightarrow 001111 \rightarrow 001111 \) is called a derivation. We can also represent this as a parse tree.

The set of all strings a grammar produces is the language of the grammar. A language which a (context-free) grammar produces is context-free. We can combine rules with an or to get \(A \rightarrow 0A1 | \varepsilon \).
Sipser gives us a good example.

\[
\begin{align*}
S & \rightarrow NP \ VP \\
NP & \rightarrow CN \mid CN \ PP \\
VP & \rightarrow CV \mid CV \ PP \\
PP & \rightarrow P \ CN \\
CN & \rightarrow A \ N \\
CV & \rightarrow V \mid V \ NP \\
A & \rightarrow a \mid the \\
N & \rightarrow boy \mid girl \mid flower \\
V & \rightarrow touches \mid likes \mid sees \\
P & \rightarrow with
\end{align*}
\]

\[
S \rightarrow NP \ VP \\
\rightarrow CN \ CV \\
\rightarrow A \ N \ V \ NP \\
\rightarrow \text{the boy sees} \ CN \ PP \\
\rightarrow \text{the boy sees} \ A \ N \ P \ CN \\
\rightarrow \text{the boy sees} \ a \ girl \ with \ A \ N \\
\rightarrow \text{the boy sees} \ a \ girl \ with \ a \ flower
\]

Note that English is not a context-free language. Most such languages are not, though you can get far with just context-free grammars.
A context-free language can also be represented with a pushdown automata.

A PDA is a finite state machine with a stack. The stack can push and pop items onto the top of the stack.

Ex) If our alphabet is \(\mathbb{Z}, 0, 1, \epsilon, +, -, \times, \div, (,) \), then we can validate arithmetic expressions. We push (and ops onto the stack and pop off when we get a) or a second number respectively. We accept if the stack is clean when we're done.

Note that PDAs have no mechanism for checking if the stack is empty. However, you can push a unique symbol onto it to denote the bottom of the stack.

Ex) We draw a PDA for \(\{0^n 1^n | n \geq 0\} \).

Note that this is a nondeterministic PDA. Unlike with regular languages, where DFAs and NFAs are equivalent, NPDA's are more powerful than DPDAs.
Closure Properties

- Union
- Reversal
- Concatenation
- Kleene Star
- Not: intersection or complement

Exj \(A = \{ a^n b^n c^m \mid n, m \in \mathbb{Z} \} \) \(B = \{ a^n b^n c^n \mid n \in \mathbb{N} \} \)

\[
\begin{align*}
S &\rightarrow LR \\
L &\rightarrow aLb \\
L &\rightarrow \varepsilon \\
R &\rightarrow cR \text{ (or } Rc) \\
R &\rightarrow \varepsilon \\
S &\rightarrow LR \\
L &\rightarrow aL \text{ (or } La) \\
L &\rightarrow \varepsilon \\
R &\rightarrow bRc \\
R &\rightarrow \varepsilon \\
\end{align*}
\]

Exj \(A \cap B = \{ a^n b^n c^n \mid n \geq 0 \} \) is not context-free.

Context-Free Pumping Lemma

Let \(L \subseteq \Sigma^* \) be context-free. Then \(\exists p \geq 1 \) such that \(\forall w \in L \)
of length at least \(p \), we can write \(w = \alpha \gamma v \) such that

i) \(|\gamma| \geq 1 \)

ii) \(|\alpha \gamma| \leq p \)

iii) \(\alpha \gamma v \gamma v^n \in L \) for all \(n \geq 0 \).

In \(A \cap B \) above, the trouble lies in requiring all of \(a^n b^n \) and \(c^n \) to have the same length. The pumping lemma only lets us match two of them at a time via \(u \) and \(v \).
Example: $\exists w w^R | w \in \{0, 1\}^*$

- $S \rightarrow 0S0$
- $S \rightarrow 1S1$
- $S \rightarrow \varepsilon$

Diagram:

- States: q_0, q_1, q_2
- Transitions:
 - q_0:
 - $\varepsilon, \varepsilon \rightarrow 0$
 - $0, 0 \rightarrow 0$
 - $0, 1 \rightarrow \varepsilon$
 - q_1:
 - $\varepsilon, \varepsilon \rightarrow 0$
 - $0, 0 \rightarrow \varepsilon$
 - $1, 1 \rightarrow \varepsilon$
 - q_2:
 - $\varepsilon, \varepsilon \rightarrow 0$
 - $0, 0 \rightarrow \varepsilon$
 - $1, 1 \rightarrow \varepsilon$

Word: $w = 010010$

Some solution but q_0 is no longer an accepting state.