Recall that a language L is **decidable** if there is a TM M that halts on every input and $L(M) = L$.

It is easy to show that the regular languages have a lot of useful decidable properties. We have previously shown there is an algorithm (and hence a TM) which decides the following languages (see Decidable DFA properties).

$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA which accepts } w \}$

$A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA which accepts } w \}$ (since NEAs = DFAs)

$E^2_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs with } L(D_1) = L(D_2) \}$

$E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA such that } L(D) = \emptyset \}$

$\text{MIN}_{DFA} = \{ \langle D \rangle \mid D \text{ is a minimal-state DFA} \}$

$\text{ALL}_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA such that } L(D) = \Sigma^* \}$

The restriction of these properties to regular languages makes them easy. We will see soon that all of these languages are undecidable for general TMs.

It is, however, possible to show the context-free (and context-sensitive) languages are decidable. As such, all of the above properties hold when restricted to those classes of languages as well. This gives us the following (proper) inclusions.

In order to show decidable \subset recognizable is proper, we need some initial undecidable language. A TM will be it, but to show this true, we need to understand organizational