Problem 1. Prove using induction that for all positive integers \(n \)
\[
\sum_{i=0}^{n} 6 \cdot 7^i = 7^{n+1} - 1.
\]

Solution 1. To begin, we prove the base case. Let \(n = 1 \). Then we have,
\[
\sum_{i=0}^{1} 6 \cdot 7^i = 6 \cdot 7^1 + 6 \cdot 7^0 = 6(7 + 1) = 48 = 49 - 1 = 7^{1+1} - 1.
\]
Now assume for some \(n \geq 1 \) that
\[
\sum_{i=0}^{n} 6 \cdot 7^i = 7^{n+1} - 1.
\]
Then for the \(n + 1 \) case, we have
\[
\sum_{i=0}^{n+1} 6 \cdot 7^i = \sum_{i=0}^{n} 6 \cdot 7^i + 6 \cdot 7^{n+1} = 7^{n+1} - 1 + 6 \cdot 7^{n+1} = (6 + 1) \cdot 7^{n+1} - 1 = 7^{n+2} - 1.
\]

Problem 2. Prove that if \(a, b, c > 0 \), then if \(ax^2 + bx + c = 0 \) has real solutions, both solutions are negative.

Solution 2. Let \(a, b, c > 0 \). Now consider the case where \(x \geq 0 \). Clearly, \(ax^2 + bx + c \geq 0 \) since \(x \) is nonnegative and \(c > 0 \). Thus if there are any real solutions to \(ax^2 + bx + c = 0 \), it must be the case that \(x < 0 \).

Problem 3. Prove that \(n^5 - n \) is divisible by 10 for all integers \(n \). (Hint: You can use induction, make a clever residue argument, or use a more exotic approach.)

Solution 3. We can prove this simply by induction.

Consider the base case when \(n = 1 \). Then \(1^5 - 1 = 0 \), which is certainly divisible by 10.

Now assume for all integers \(i \) with magnitude \(n \) (i.e. \(n \) and \(-n \)) that
\[
10 \mid i^5 - i.
\]
For the $n + 1$ case, first consider when $i > 0$. Then we have

$$(i + 1)^5 - (i + 1) = \sum_{k=0}^{5} \binom{5}{k} i^k - (i + 1)$$

since $(i + 1)^5$ is just a binomial expansion. We then group terms.

$$\sum_{k=0}^{5} \binom{5}{k} i^k - i + 1 = (i^5 - i) + 10(i^3 + i^2) + 5(i^4 + i) + (1 - 1)$$

By assumption, 10 divides the first term. The second term is also clearly divisible, and the constants cancel each other out. It only remains to show that $2 \mid i^4 + i$.

If i is even, this is obvious, so assume i is odd. An odd number times an odd number is always odd, hence i^4 is odd. But an odd number plus an odd number is always even, hence $i^4 + i$ must be even. Thus $2 \mid i^4 + i$.

The case where $i < 0$ follows similarly.

We can solve this more easily by examining the question more closely. When we ask if $10 \mid n^5 - n$, we are really asking if $n^5 - n \equiv 0 \mod 10$. In other words, we only care about the cases where $n \in \mathbb{Z}_{10}$ since all others are equivalent to one of them. Checking that the statement is true for all n now is a routine matter of substitution.

<table>
<thead>
<tr>
<th>n</th>
<th>$n^5 - n$</th>
<th>residue mod 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1020</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3120</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7770</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>16800</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>32760</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>59040</td>
<td>0</td>
</tr>
</tbody>
</table>

Problem 4. Draw a DFA or an NFA that accepts the language

$$A = \{ \omega \in \{0, 1\}^* \mid \text{The number of 1’s in } \omega \text{ is divisible by 3} \}.$$

Solution 4. To accept a string ω, we need only keep track of the residue of the number of 1’s in $\omega \mod 3$ as we encounter them.
Problem 5. Draw a DFA or an NFA that accepts the language

\[B = \{ \omega \in \{0, 1\}^* \mid \text{The fourth and second to last bit of } \omega \text{ is } 1 \} \].

Solution 5. There are two reasonable interpretations for this problem. Either the fourth and second to last bits of \(\omega \) must be 1 or the fourth bit and the second to last bit of \(\omega \) must be 1. We present solutions to both in this order.

In this first machine, we need only nondeterministically ensure that there are at least four bits and that the 1st and 3rd of the last four bits (the fourth and second to last bits) are both 1s.

In this second machine, we need to separate out two special cases from the general case. We have have strings where the second to last bit comes before the fourth bit (strings of length 4). We also have strings where the second to last bit is the fourth bit (strings of length 5). Then we have the general case when strings are of length at least 6.
Problem 6. Prove that the DFA below accepts the language

\[C = (00|11)^*. \]

Solution 6. The easiest way to prove this is to convert the DFA to a GNFA and then perform the full reduction. We present the sequence of reductions below (but omit empty transitions \([not \ \epsilon \ \text{transitions}]\) for the sake of clarity).
Problem 7. Let Σ be an arbitrary alphabet. Given a language $L \subseteq \Sigma^*$, the even part of L is the set

$$E(L) = \{ \omega \in L \mid |\omega| \text{ is even} \}.$$

Prove or disprove that if L is regular, then $E(L)$ is also regular.

Solution 7. Let L be regular. We prove that $E(L) = \mathcal{E}$ is also regular. Given a DFA for L, we could construct a new DFA with states $Q \times \mathbb{Z}_2$ that keeps track of if the input has even or odd length so far. This is somewhat cumbersome, however, compared to the Kolmogorov approach.
Since \(L \) is regular, the characteristic sequence of \(L_x \) for each \(x \in \Sigma^* \), \(\chi_{L,x} \), satisfies
\[
K(\chi_{L,x}[1\ldots n] \mid n) \in O(1).
\]
We can then give a description of \(\chi_{E,x} \) as thus.

\[
\chi_{E,x}(i) = \begin{cases}
\chi_{L,x}(i) & |x| + |y_i| \text{ even} \\
0 & \text{otherwise}
\end{cases}
\]

Notice that we only need to know the parity of \(|x|\), not all of \(x\), in this definition/description, which requires only a single bit to record. Moreover, since \(K(\chi_{L,x}[1\ldots n] \mid n) \in O(1) \), it follows that, given the description of \(\chi_{E,x} \) above, \(K(\chi_{E,x}[1\ldots n] \mid n) \in O(1) \).

Problem 8. Prove that the class of regular languages is closed under intersection.

Solution 8. Let \(A \) and \(B \) be regular languages. As with the previous problem, we can define a new DFA that accepts \(A \cap B \). Let
\[
D_A = (Q_A, \Sigma_A, \delta_A, q_{0,A}, F_A)
\]
and
\[
D_B = (Q_B, \Sigma_B, \delta_B, q_{0,B}, F_B)
\]
be DFAs for \(A \) and \(B \) respectively. Then we can create
\[
D = (Q_A \times Q_B, \Sigma_A \times \Sigma_B, \delta, (q_{0,A}, q_{0,B}), F_A \times F_B),
\]
where \(\delta((q_a, q_b), (c, d)) = (\delta(q_a, c), \delta(q_b, d)) \). This \(D \) machine simulates \(A \) and \(B \) simultaneously and accepts iff both \(D_A \) and \(D_B \) accept.

To formally verify this, consider \(\omega \in (\Sigma_A \times \Sigma_B)^* \). Let \(\omega_A \) be the string created by taking the first component of \(\omega \). Similarly, let \(\omega_B \) be the string created by taking the second component of \(\omega \). Then
\[
\delta^*((q_{0,A}, q_{0,B}), \omega) = (\delta^*(q_{0,A}, \omega_A), \delta^*(q_{0,B}, \omega_B)).
\]
Clearly, \(D \) ends up in an accepting state iff both \(D_A \) and \(D_B \) both do simultaneously.

Alternatively, the Kolmogorov approach is nearly identical to the prior problem’s. The only difference is our definition of the characteristic sequence. So if \(\chi_{A,x} \) and \(\chi_{B,x} \) are characteristic sequences for \(A_x \) and \(B_x \) respectively, then we simply define \(\chi_{A \cap B,x}(i) = \chi_{A,x}(i) \wedge \chi_{B,x}(i) \), which clearly has only constant overhead to specify.

Problem 9.

a) Prove that any finite set of strings is regular.

b) A countable union is the union of a countable number of sets, whether finite or countably infinite. Prove or disprove that the set of regular languages is closed under countable unions.

Solution 9.
a) For any finite string ω, we can write down a DFA which accepts exactly that string. To do so, we simply reject if we get a bit that doesn’t match ω exactly. We end up with $|\omega| + 1$ states with this construction, which isn’t great, but suffices.

To extend this to any finite set L, note that L can be broken up into a finite union of singletons (disregarding the empty set, which is obviously regular). Moreover, the regular languages are closed under finite unions. Thus since each of these singletons is regular, it follows that L itself is regular.

b) Consider any irregular language L. We know that L is countable (Σ^* is always countable, hence any language must be as well). This means that L is the countable union of singleton sets. Each of these singleton sets is regular by part a. But then if the regular languages were closed under countable unions, then L would regular. This is absurd, therefore the regular languages are not closed under countable unions.

Problem 10.

a) Prove that the powers of 2 base 1, i.e.

$$\{1^n \mid n = 2^k \text{ for } k \in \mathbb{N}\},$$

is irregular.

b) Prove that the powers of 2 base 2, i.e.

$$\{\omega \in \{0, 1\}^* \mid \omega \text{ is the base 2 representation of a power of 2}\},$$

is regular.

c) Prove that the powers of 2 base 10, i.e.

$$\{\omega \in \mathbb{Z}_{10}^* \mid \omega \text{ is the base 10 representation of a power of 2}\},$$

is irregular.

Solution 10.

a) Let $L = \{1^n \mid n = 2^k \text{ for } k \in \mathbb{N}\}$.

Pick $x = 1^{2^m}$ where $K(m) \not\in O(1)$. Then the first element of L_x lexicographically is x (the string $xx = 1^{2^m}1^{2^m} = 1^{2 \cdot 2^m} = 1^{2^{m+1}}$). If L were regular, then it must be the case that $K(x) \in O(1)$. This is absurd, since $K(x) \geq K(m) \not\in O(1)$, therefore L is not regular.

b) We give a DFA which recognizes it to prove this set is regular.

![DFA Diagram]
c) Let \(L = \{ \omega \in \mathbb{Z}_{10}^* \mid \omega \text{ is the base 10 representation of a power of 2} \} \).

This problem will not count against anyone and, if correct, will be worth a bonus point. It is a lot harder than I expected it to be from the intuition, and another professor I ran it by missed that fact too. Look up Cobham’s Theorem if you’re interested, which I will not reproduce here. It’s not trivial.