Problem 1. Consider the DFA $D = (Q, \mathbb{Z}_2, \delta, q_0, F)$ given below.

a) For each of the following, fill in the blank (you may draw a table for $\delta$):
   - $Q =$
   - $\delta =$
   - $q_0 =$
   - $F =$

b) What language $L(D)$ does $D$ accept?

c) Prove that $L(D)$ is the set you specified in part (b).

Solution 1.

a) $Q = \{q_1, q_2, q_3\}$
   - $q_0 = q_1$
   - $F = \{q_1, q_2\}$

<table>
<thead>
<tr>
<th>$\delta(q, a)$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_1$</td>
<td>$q_1$</td>
<td>$q_2$</td>
</tr>
<tr>
<td>$q_2$</td>
<td>$q_1$</td>
<td>$q_3$</td>
</tr>
<tr>
<td>$q_3$</td>
<td>$q_3$</td>
<td>$q_3$</td>
</tr>
</tbody>
</table>

b) $L(D) = \{\omega \in \{0, 1\}^* \mid \omega \text{ has no consecutive 1's}\}$

c) Let $A$ be the language defined in part b.

Define the statement $S(n) := \forall \omega \in \mathbb{Z}_2^* \text{ such that } |\omega| = n \text{ and } \omega \text{ does not contain consecutive 1's},$

$$\delta^*(q_1, \omega) = \begin{cases} 
q_1 & \omega \text{ does not end in a 1} \\
q_2 & \omega \text{ ends in a 1.}
\end{cases}$$
Clearly $S(n)$ covers all strings in $A$ of length $n$ for each $n$. Moreover, both $q_1$ and $q_2$ are accepting states. It thus suffices to demonstrate via induction that $P(n)$ is true for all $n \geq 0$ to show $A \subseteq L(D)$.

When $n = 0$, Clearly, $D$ accepts $\epsilon$ and $\delta^*(q_1, \epsilon) = q_1$ as desired.

Now assume that $S(n)$ is true for some $n \geq 0$. Let $\omega a \in \mathbb{Z}_2^*$ such that $a \in \mathbb{Z}_2$, $|\omega a| = n + 1$, and $\omega a$ does not contain consecutive 1’s.

Since $\omega a$ does not contain consecutive 1’s, it follows that $\omega$ also does not. Moreover, $|\omega| = |\omega a| - 1 = n + 1 - 1 = n$, so we have two cases.

**Case $\omega$ ends in a 1:** In this case, since $\omega a$ does not have consecutive 1’s, it follows that $a$ must be 0 and $\delta^*(q_1, \omega) = q_2$. But then,

$$\delta^*(q_1, \omega a) = \delta(\delta^*(q_1, \omega), a) = \delta(q_2, 0) = q_1.$$

Since $\omega a$ does not end in a 1, this is precisely what we wanted.

**Case $\omega$ ends in a 0:** In this case, $a$ may be either 0 or 1. By assumption, $\delta^*(q_1, \omega) = q_1$. When $a = 0$, we get $\delta^*(q_1, \omega a) = \delta(q_1, 0) = q_1$ as desired. When $a = 1$, we get $\delta^*(q_1, \omega a) = \delta(q_1, 1) = q_2$ as desired.

We have thus shown that $S(n)$ is true for all $n$.

It remains to show that $L(D) \subseteq A$. This direction is somewhat trivial.

Suppose $\omega \notin A$. Then there exists $i$ such that $\omega_i = \omega_{i+1} = 1$. There are three cases.

**Case $\delta^*(q_1, \omega[1\ldots i - 1]) = q_1$:** Then

$$\delta^*(q_1, \omega[1\ldots i + 1]) = \delta(\delta^*(q_1, \omega[1\ldots i - 1]), 1), 1) = \delta(q_3, 1), 1) = q_3.$$

**Case $\delta^*(q_1, \omega[1\ldots i - 1]) = q_2$:** Then

$$\delta^*(q_1, \omega[1\ldots i]) = \delta(\delta^*(q_1, \omega[1\ldots i - 1]), 1) = \delta(q_2, 1) = q_3.$$

**Case $\delta^*(q_1, \omega[1\ldots i - 1]) = q_3$:** Then $\delta^*(q_1, \omega[1\ldots i - 1]) = q_3$.

In each case, we enter state $q_3$ during $D$’s computation. Since $q_3$ is a nonaccepting absorbing state, it follows that $D$ does not accept $\omega$, hence $\omega \notin L(D)$.

Consider a less verbose alternative proof. Let $A$ be the language defined in part b.

Suppose $\omega \in L(D)$. Then there exists a sequence of states $p_0p_1\ldots p_{|\omega|}$ such that $p_0 = q_1$, $p_{|\omega|} \in F$, and for each $0 \leq i < |\omega|$, $\delta(p_i, \omega_i) = p_{i+1}$. Since $q_3$ is a nonaccepting absorbing state, it follows that each $p_i \neq q_3$. As such, each $p_i = q_1$ or $q_2$. But there is no walk through $q_1, q_2$ that permits consecutive 1’s! Thus $\omega \notin A$.

Now suppose $\omega \in A$. The only way to escape $F$ in $D$ is to transition from $q_2$ to $q_3$ via a 1. But the only way to be in state $q_2$ is to transition from $q_1$ to it via a 1. Hence the only way to reach a nonaccepting state is via two consecutive 1’s. Since $\omega$ has no consecutive 1’s, it follows that $D$ accepts $\omega$. Thus $\omega \in L(D)$.
Problem 2. Consider the NFA $N = (Q, Z_4, \delta, q_0, F)$ given below.

![NFA Diagram]

a) For each of the following, fill in the blank (you may draw a table for $\delta$):

- $Q =$
- $\delta =$
- $q_0 =$
- $F =$

b) What language $L(N)$ does $N$ accept?

c) Prove that $L(N)$ is the set you specified in part (b).

Solution 2.

a)  
- $Q = \{q_1, q_2, q_3, q_4, q_5\}$
- $q_0 = q_1$
- $F = \{q_1\}$

Let $\perp$ denote a transition that leads to a nonaccepting absorbing state (i.e. it causes $N$ to halt and reject its input).

<table>
<thead>
<tr>
<th>$\delta(q, a)$</th>
<th>$\epsilon$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_1$</td>
<td>${q_1}$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>$\perp$</td>
</tr>
<tr>
<td>$q_2$</td>
<td>${q_1, q_2}$</td>
<td>$\perp$</td>
<td>${q_3}$</td>
<td>$\perp$</td>
<td>$\perp$</td>
</tr>
<tr>
<td>$q_3$</td>
<td>${q_1, q_3}$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>${q_4}$</td>
<td>$\perp$</td>
</tr>
<tr>
<td>$q_4$</td>
<td>${q_1, q_4}$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>${q_5}$</td>
</tr>
<tr>
<td>$q_5$</td>
<td>${q_1, q_5}$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>$\perp$</td>
<td>$\perp$</td>
</tr>
</tbody>
</table>

b) $L(D) = (0|01|012|0123)^*$

c) Let $A$ be the language defined in part b. First note that clearly $\epsilon \in A$ and $\epsilon \in L(N)$, so we’ll exclude $\epsilon$ from consideration going forward.

We first show $A \subseteq L(N)$. Let $A_n$ be the set of all strings in $A$ with length $n > 0$. Define for $n > 0$ the statement $S(n) := \forall \omega \in A_n$ ending in $a \in Z_4$, $\delta^*(q_1, \omega) = \{q_1, q_{a+2}\}$”. It suffices to show that $S(n)$ is true for all $n > 0$ via induction.
When $n = 1$, the only string in $A_1$ is 0. In this case, $\delta^*(q_1, 0) = \{q_1, q_2\}$ as desired. Now suppose $S(n)$ is true for some $n > 0$. Let $\omega a \in A_{n+1}$ with $a \in \mathbb{Z}_4$.

Since $n > 0$, $|\omega| > 0$. Let $a' \in \mathbb{Z}_4$ be the last symbol of $\omega$. By assumption, $\delta^*(q_1, \omega) = \{q_1, q_{a'+2}\}$. We note that $a$ has two possible values: $a = 0$ or (if $a' < 3$) $a = a' + 1$.

**Case $a = 0$:** By inspection,

$$\delta^*(q_1, \omega a) = \delta(\delta^*(q_1, \omega), 0) = \delta(\{q_1, q_{a+2}\}, 0) = \{q_1, q_2\} = \{q_1, q_{a+2}\}.$$  

**Case $a' < 3$ and $a = a' + 1$:** It then follows that 

$$\delta^*(q_1, \omega a) = \delta(\delta^*(q_1, \omega), a) = \delta(\{q_1, q_{a+2}\}, a) = \delta(\{q_1, q_{a+1}\}, a) = \{q_1, q_{a+2}\}.$$  

In either case, $q_1 \in \delta^*(q_1, \omega a)$, so $\omega a \in L(N)$.

It remains to show that $L(D) \subseteq A$. This direction is somewhat trivial.

Suppose $\omega \notin A$. Then there are two possible cases. We can have $\omega = 1$, 2, or 3. $N$ does not accept any of these strings, so $\omega \notin L(N)$.

Otherwise, there exists a least $i$ (by the well-ordering principle) such that $\omega_{i+1} \neq 0$ and $\omega_{i+1} \neq \omega_i + 1$. Since this is the least $i$, it follows that $\omega[1 \ldots i] \in A$. We proved already that $\delta^*(q_1, \omega[1 \ldots i]) = \{q_1, q_{\omega_i+2}\}$. But then since $\omega_{i+1} \neq 0$ and $\omega_{i+1} \neq \omega_i + 1$,

$$\delta^*(q_1, \omega[1 \ldots i + 1]) = \delta(\delta^*(q_1, \omega[1 \ldots i]), \omega_{i+1}) = \delta(\{q_1, q_{\omega_i+2}\}, \omega_{i+1}) = \emptyset.$$  

Thus $\omega \notin L(N)$.

Consider a less verbose alternative proof. Let $A$ be the language defined in part b.

Suppose $\omega \in L(N)$. If $\omega = \epsilon$, then $\omega \in A$ and we’re done, so assume $\omega \neq \epsilon$. Then since $q_1$ is the only accepting state, it follows that there is a sequence of cycles $c_1, c_2, \ldots, c_n$ in $Q$ such that the following all hold.

- $c_i = p_{i,0} \ldots p_{i,|c_i|}$, $|c_i| \geq 2$, and $p_{i,0} = p_{i,|c_i|} = q_1$.
- We transition through $c_i$ via the input string $\omega_i = 0 \ldots (|c_i| - 1)\epsilon$.
- $\omega = \omega_1 \ldots \omega_n$.

But since $\omega_i$ must be 0, 01, 012, or 0123, $\omega_i \in 0|0|1|0|2|0|123$. $\omega$, however, consists of any finite number of concatenations of these $\omega_i$’s, so $\omega \in (0|0|1|0|2|0|123)^*$. Thus $\omega \in A$.

Now suppose $\omega \in A$. If $\omega = \epsilon$, then $\omega \in L(N)$ and we’re done, so assume $\omega \neq \epsilon$. Since $A = (0|0|1|0|2|0|123)^*$, we can rewrite $\omega$ as $\omega'$ ($\omega = \omega'$) by inserting an $\epsilon$ wherever $\omega_i \geq \omega_{i+1}$ and appending an $\epsilon$ to the end. Each substring of $\omega'$ from the symbol immediately after an $\epsilon$ to the next $\epsilon$ (possibly the same symbol) clearly denotes a cycle through $N$ starting from $q_1$. However, all of these cycles together represent all of $\omega'$, and since each cycle ends on $q_1$, it follows that $N$ must accept $\omega'$ and hence $\omega$. Thus $\omega \in L(N)$.  

4
Problem 3. For each of the following languages, give a DFA that accepts it. Unless otherwise specified, you may assume $\Sigma = \{0, 1\}$.

a) $L_1 = \{\omega \in \Sigma^* \mid \omega \text{ is of the form } 0^*1^*\}$

b) $L_2 = \overline{L_1}$

c) $L_3 = \{\omega \in \Sigma^* \mid \text{every even bit of } \omega \text{ is a } 0\}$

d) $L_4 = \{\omega \in \Sigma^* \mid \omega \text{ has even length if it starts with } 0 \text{ and has odd length if it starts with } 1\}$

e) $L_5 = \{\omega \in \Sigma^* \mid \omega \text{ is any string except } 0 \text{ or } 1\}$

f) $L_6 = 0^*1(0^*10^*)^*$

Solution 3.

a)

```
q_1 \rightarrow 0 \rightarrow q_1 \rightarrow 1 \rightarrow q_2
```

b)

```
q_1 \rightarrow 0 \rightarrow q_2 \rightarrow 1 \rightarrow q_3
```

c)

```
q_e \rightarrow 0, 1 \rightarrow q_o
```

d)

```
q_0 \rightarrow 0 \rightarrow q_1 \rightarrow 0, 1 \rightarrow q_2
```

```
q_0 \rightarrow 0 \rightarrow q_3 \rightarrow 0, 1 \rightarrow q_4
```

Problem 4. For each of the following languages, give an NFA that accepts it subject to (if any) the provided state restriction. Unless otherwise specified, you may assume $\Sigma = \{0, 1\}$.

a) With at most 2 states, $L_7 = \{1\}$

b) With at most 3 states, $L_8 = 0^*1^+0^*$

c) With at most 3 states, $L_9 = 1^*(001^+)^*$

d) $L_{10} = \{x1^*y \mid x, y \in \Sigma^+\}$

e) $L_{11} = \{\omega \in \mathbb{Z}_4^* \mid \omega \text{ contains at most one of each } a \in \mathbb{Z}_4\}$

f) Using as few states as possible, $L_{12} = \{\omega^* \mid \omega \in \mathbb{Z}_4^* \text{ and } \omega \text{ contains at most one of each } a \in \mathbb{Z}_4\}$

Solution 4.

a)

\[ q_0 \xrightarrow{1} q_1 \]

b)

\[ q_0 \rightarrow 0, 1 \rightarrow q_1 \rightarrow 0, 1 \rightarrow q_2 \]

Problem 5.

a) Prove that every NFA can be converted into an NFA with a single accept state.

b) Prove that every DFA can be converted into a DFA with a single accept state.

Solution 5.

a) Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. We construct a new NFA $N' = (Q \cup \{ q_a \}, \Sigma, \delta', q_0, \{ q_a \})$, where $\delta'$ on inputs $q \in Q \cup \{ q_a \}$ and $c \in \Sigma$ is

$$
\delta'(q, c) = \begin{cases} 
\delta(q, c) & q \in Q \land c \neq \epsilon \\
\delta(q, c) \cup \{ q_a \} & q \in Q \land c = \epsilon
\end{cases}
$$

It remains to show that $L(N) = L(N')$. 

b) Let $S, T \in \mathcal{P}(\mathbb{Z}_4)$ such that $S \subseteq T$ and $|S| + 1 = |T|$. Let $a \in \mathbb{Z}_4$ be the unique element of $T$ not in $S$. Add a transition from $q_S$ to $q_T$ via $a$. Let the start state be $q_\emptyset$.

e) Create an accepting state $q_S$ for each subset $S$ of $\mathbb{Z}_4$. Let $S, T \in \mathcal{P}(\mathbb{Z}_4)$ such that $S \subseteq T$ and $|S| + 1 = |T|$. Let $a \in \mathbb{Z}_4$ be the unique element of $T$ not in $S$. Add a transition from $q_S$ to $q_T$ via $a$. Let the start state be $q_\emptyset$.

f) Create a state $q_g$ for each ordered tuple $g \in A = \{(\) \} \cup \mathbb{Z}_4 \cup \mathbb{Z}_4^2 \cup \mathbb{Z}_4^3 \cup \mathbb{Z}_4^4$ such that each component of $g$ is distinct. Let the start state be $q_\emptyset$. Make the start state an accepting state. Let $g, h \in A$ such that if $g$ is an $n$-tuple, then $h$ is an $(n + 1)$-tuple and $g_i = h_i$ for every valid index $i$. Let $a$ be the last component of $h$. Add a transition from $q_g$ to $q_h$ via $a$. For each state $q_g$ other than $q_\emptyset$, we add an epsilon transition to a sub-NFA $N_g$ which we describe below. Write the components of $g$ in order as a string $\omega_g$. $N_g$ starts in an accepting state and has the self loop with transition $\omega_g$. This is a GNFA transition, of course, but it is easy to unwind it into a sequence of $|\omega_g|$ states for an NFA.
Let $\omega \in L(N)$. Then $\delta^*(q_0, \omega) \subseteq \delta^{*\prime}(q_0, \omega)$ by construction. Moreover, $\exists q \in F$ such that $q \in \delta^*(q_0, \omega)$, hence $q \in \delta^{*\prime}(q_0, \omega)$. But $q_a \in \delta'(q, \epsilon)$, so $q_a \in \delta^{*\prime}(q_0, \omega)$. Thus $N'$ accepts $\omega$ and $\omega \in L(N')$.

Now let $\omega \in L(N')$. The only way to reach the unique accepting state $q_a$ for $N'$ to accept is via an $\epsilon$ transition from a state $q \in F$. Further, since we cannot leave $q_a$, it follows from the construction of $\delta'$ that $\delta^*(q_0, \omega) = \delta^{*\prime}(q_0, \omega) \setminus \{q_a\}$. Therefore $q \in \delta^*(q_0, \omega)$, so $N$ accepts $\omega$ and $\omega \in L(N)$.

b) This cannot be done. Below is a counterexample on the unary alphabet.