CSC 341 - Fall 2022
Problem Set 6

Due Monday, October 31

Problem 1. Draw a TM M which decides the language $A = \{a^n b^n c^n \mid n \geq 0\}$, where the input alphabet $\Sigma = \{a, b, c\}$.

Problem 2. Give an algorithm for a TM M which decides the language

$$C = \{\langle D, \omega \rangle \mid D \text{ is a DFA and } D \text{ accepts } \omega \}. $$

Note that $\langle D, \omega \rangle$ is some reversible encoding of D and ω into a string. The precise details of how this encoding is computed is irrelevant to the algorithm you give. The key point is you have access to each parameter.

Problem 3. To prove that enumerators are equivalent to Turing machines, we created an enumerator E given a TM M such that $L(E) = L(M)$. The algorithm for this is given below.

$$E = \text{"Ignore input,}$$

1. For $i = 1$ to ∞
 (a) For $j = 1$ to i
 i. Run M on input ω_j for i steps (ω_j is the j^{th} element of Σ^*)
 ii. If M accepts, print ω_j"

Explain why the following algorithm for E does not work.

$$E = \text{"Ignore input,}$$

1. For $i = 1$ to ∞
 (a) Run M on input ω_i (ω_i is the i^{th} element of Σ^*)
 (b) If M accepts, print ω_i"

Problem 4. For a string $\omega \in \{0, 1\}^+$, the one’s compliment of ω, written $\overline{\omega}$, is obtained by inverting all of its bits (flipping 0 to 1 and 1 to 0).

Draw a TM which, on input $\omega \in \{0, 1\}^+$, reaches some accepting configuration with exactly $\overline{\omega}$ on the tape. If M’s input is ϵ, it should enter a rejecting configuration with nothing on the tape.

In other words, give a TM which converts its input ω into $\overline{\omega}$ and accepts (or rejects if $\omega = \epsilon$). The head may point anywhere on the tape when it halts.
Problem 5. Draw a TM M which, on input $\omega \in \{0, 1\}^+$, reaches the accepting configuration $q_\omega \omega$. If M's input is ϵ, it should enter the rejecting configuration $q_r \epsilon$.

In other words, M converts its input ω into ω and accepts with the head pointing to the first cell (i.e. the head is as far left as possible). If M's input is ϵ, it instead rejects with the head pointing to the first cell on the tape (a blank cell).