Problem 1. We defined the language A_{TM} to be the set of $\langle M, \omega \rangle$ such that $M(\omega)$ accepts. Prove that $\overline{A_{TM}}$ is not recognizable. You may assume that A_{TM} is not decidable.

Problem 2. The set of all strings, Σ^*, is countable. This means there is a (computable) bijection $\phi : \mathbb{N} \rightarrow \Sigma^*$ that enumerates Σ^*. As a consequence, this readily yields a notion of subsets of the natural numbers being recognizable.

Let $L \subseteq \mathbb{N}$. We say that L is recognizable if there is a Turing machine M for which

$$L(M) = \{ \phi(n) \mid n \in L \}.$$

Generally, we leave ϕ implicit and simply allow M to accept a natural number input n.

Give a definition of recognizability for any countable set S and prove that it is equivalent to the definition for \mathbb{N}.

Problem 3. Prove that the language $S = \{(i, j) \mid M_i(j) \text{ accepts}\}$ is recognizable but not decidable, where M_i is the i^{th} Turing machine and j corresponds to the j^{th} string in Σ^* (see problem 2).

Problem 4. Prove that the language $K = \{ i \mid M_i(i) \text{ halts} \}$ is recognizable (see problem 2).

Now prove that the language $\overline{K} = \{ i \mid M_i(i) \text{ does not halt} \}$ is not recognizable (i.e. K is not co-recognizable).

Problem 5. Prove that the language $FIN_{TM} = \{ i \mid |L(M_i)| < \infty \}$ is neither recognizable nor co-recognizable (see problem 2). (Hint: Both results can arise from a reduction from \overline{K}. One is easy. The other is not.)