Runtimes

```python
foo (arr):
    do
        swapped = false
        for i = 1 to len(arr)-1:
            if arr[i-1] > arr[i]:
                swap arr[i-1] and arr[i]
                swapped = true
    while swapped
```

What is the runtime?
- WC: \(\Theta(n^2) \) - all swaps
- BC: \(\Theta(n) \) - no swaps
- AC: \(\Theta(n^2) \) - half swaps

What is \(n \)?
- Array size
- Graph size (edges vs vertices)
- # of bits

Why do we care about runtime? Why not real execution time?

What about space?
- foo uses \(\Theta(n) \) space and \(\Theta(1) \) auxillary.

What counts as an atomic operation outside of bitland?
- Comparison
- Assignment
- Arithmetic operations (not exponentiation)

Note that we ignore memory management overhead. We're interested only in the complexity of operations on data structures.
Big O notation

We only care about asymptotic behavior.

\[2x \quad 5x + 4 \quad x + \sqrt{x} \]

These are all basically the same function eventually in performance.
We formalize this notion into equivalence classes.

Let \(f, g : \mathbb{N} \to \mathbb{N} \). We say \(f \in O(g) \) if \(\exists c \in \mathbb{R}^+ \forall n \geq n_0 \quad |f(n)| \leq c |g(n)| \)

Ex: Prove \(2n^2 + n - 1 \in O(n^2) \).

\[
|2n^2 + n - 1| \leq 2n^2 + n^2 - 1 \quad (n \geq 1) \\
\leq 2n^2 + n^2 \quad \text{(everywhere)} \\
= 3n^2 \quad (n = 1) \\
= 3|n^2| \quad (n \geq 1)
\]

\[c = 3 \quad N = 1 \]

Ex: Prove for \(f, g : \mathbb{N} \to \mathbb{N} \) that if \(f \in O(g) \), \(f + g \in O(g) \).

Since \(f \in O(g) \), \(\exists c_0 \in \mathbb{R}^+ \forall n \in \mathbb{N} : |f(n)| \leq c_0 |g(n)| \) when \(n \geq n_0 \).

Then when \(n \geq n_0 \),

\[
|f(n) + g(n)| \leq |f(n)| + |g(n)| \\
\leq c_0 |g(n)| + |g(n)| \\
= (c_0 + 1) |g(n)|.
\]

\[c = c_0 + 1 \quad N = n_0 \]

Obs: Smaller terms don’t matter asymptotically.
Ex1 Prove $n^2 \neq O(n)$.
Let $c \in \mathbb{R}^+$ and $N \in \mathbb{N}$ be given.
Then when $n \geq \max(c, N) + 1 > 0$

$$|n^2| = n^2 \quad > cN \quad = c|N|,$$

hence $n^2 \notin O(n)$.

Other Classifications

Big O

$f \in O(g) \iff f \text{ is at most } g$.

Little o

$f \in o(g) \iff \forall c \in \mathbb{R}^+ \forall n, |f(n)| < c \lg(n)$

$f \in o(g) \iff f \text{ is smaller than } g$.

Big Ω

$f \in \Omega(g) \iff \exists c \in \mathbb{R}^+ \forall n, |f(n)| \geq c \lg(n)$

$f \in \Omega(g) \iff f \text{ is at least } g$.

Little ω

$f \in \omega(g) \iff \forall c \in \mathbb{R}^+ \forall n, |f(n)| \geq c \lg(n)$

$f \in \omega(g) \iff f \text{ is bigger than } g$.

Thetϑ

$f \in \Theta(g) \iff f \in O(g) \text{ and } f \in \Omega(g)$

$f \in \Theta(g) \iff f \text{ is the same as } g$.
Complexity Relations

\[f \in o(g) \Rightarrow f \in O(g) \]
\[f \in \omega(g) \Rightarrow f \in \Omega(g) \]
\[f \in O(g) \Rightarrow g \in \Omega(f) \]
\[f \in o(g) \Rightarrow g \in \omega(f) \]

Limit Definitions

Consider the limit

\[\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = m \]

assuming the limit exists.

If the limit exists and \(m = 0 \), \(f \in o(g) \).

If the limit exists and \(m > 0 \), \(f \in \Theta(g) \).

Where does \(O \) fit into this?

If we flip \(f \) and \(g \) in \(\infty \), we get the same results for \(\omega, \Omega \).

How do we get results for \(\omega, \Omega \)?

(See complexity relations above.)