So far we've reduced problems to each other via an oracle that gives us (often undecidable) answers. For example, given an oracle (a decider) for E_{TM}, we created a decider for A_{TM}. Since A_{TM} is $DREC$, it follows that E_{TM} is $DREC$. This is a Turing reduction, denoted as $A_{TM} \leq_T E_{TM}$.

In other words, if $A \leq_T B$, then A is decidable relative to B. From this, we get the following theorem.

(Th) If $A \leq_T B$ and B is decidable, then A is decidable.

It is very tempting to think $A \leq_T B \implies B \in RE \implies A \in RE$.

After all, if you can map (accepting) instances of A to (accepting) instances of B, then if B is recognizable, surely A must be too.

There is, however, hidden additional structure there. If you map $x \in A$ to $f(x) \in B$, then you also map $x \notin A$ to $f(x) \notin B$.

This is key! A general Turing reduction does not have this property. For example, we've shown that $A_{TM} \leq_T E_{TM}$, but $A_{TM} \notin RE$ and $E_{TM} \in RE$. The reduction we performed is more honestly written as $A_{TM} \leq_T \overline{E_{TM}}$. Note $\overline{E_{TM}} \in RE$.

Let's formalize this notion.

A function $f: \Sigma^* \to \Sigma^*$ is computable if there exists a TM M such that for all inputs $w \in \Sigma^*$, $M(w)$ halts with exactly $f(w)$ on its tape.
A language \(A \) is mapping reducible to a language \(B \), written \(A \leq m B \), if there is a computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that for every input \(w \in \Sigma^* \), \(w \in A \iff f(w) \in B \). The function \(f \) is called the reduction from \(A \) to \(B \).

On an intuitive level, when we write a reduction \(A \leq m B \), it means that \(A \) is no harder than \(B \) or, vice versa, \(B \) is at least as hard as \(A \).

Mapping reductions give us a bit more information than Turing reductions.

Thm. If \(A \leq m B \) and \(B \in \text{DEC} \), then \(A \in \text{DEC} \).

** Pf.** Let \(D \) be a decider for \(B \). Then \(D(f(w)) \) decides \(A \).

Cor. If \(A \leq m B \) and \(A \in \text{DEC} \), then \(B \in \text{DEC} \).

We can recover old theorems via mapping reductions.

Thm. \(\text{HALT} \leq m \text{DEC} \)

** Pf.** Define the TM \(M' \) to be

\[N_M = \text{"On input } w\text{,}
\begin{align*}
1) & \text{Run } M(w) \\
2) & \text{Accept if } M(w) \text{ accepts.} \\
3) & \text{Loop forever."}
\end{align*} \]

Clearly \(N_M(w) \) halts iff \(M(w) \) accepts. So if we define the obviously computable function \(f(<M,w>) = <M',w> \) (improperly formatted strings are left unmodified), then \(<M,w> \in A_M \iff <M',w> \in \text{HALT}_M \).
So $A_{TM} \leq_m \text{HALT}_{TM}$, but $A_{TM} \notin \text{DEC}$, hence $\text{HALT}_{TM} \notin \text{DEC}$.

But wait! There's more we can learn from $A_{TM} \leq_m \text{HALT}_{TM}$.

Thm. If $A \leq_m B$, then $\overline{A} \leq_m \overline{B}$.

Pf. The same reduction yields the result.

Thm. If $A \leq_m B$ and $B \in \text{RE}$, then $A \in \text{RE}$.

Pf. Identical to the DEC case except we have recognizers instead of deciders (this is what we would have hoped \leq_T would do).

Cor. If $A \leq_m B$ and $A \notin \text{RE}$, then $B \notin \text{RE}$.

Cor. If $A \leq_m B$ and $B \in \text{co-RE}$, then $A \in \text{co-RE}$.

Pf. $A \leq_m B \Rightarrow \overline{A} \leq_m \overline{B}$. Since $B \in \text{co-RE}$, $\overline{B} \in \text{RE}$, then $A \in \text{RE} \Rightarrow A \in \text{co-RE}$.

Cor. If $A \leq_m B$ and $A \notin \text{co-RE}$, then $B \notin \text{co-RE}$.

These theorems will show up again later in time/space resource restricted reductions, but first an example.

Thm. $E_{TM} \in \text{RE}$ and $E_{TM} \notin \text{co-RE}$.

Pf. We give two reductions: $A_{TM} \leq_m E_{TM}$ and $A_{TM} \leq_m \overline{E_{TM}}$.

Consider the TMs R and $N_{w,v}$, where

$R =$ "On input w,
1) Reject"

$N_{w,v} =$ "On input v,
1) Run $M(w)$
2) Accept if $M(w)$ accepts and reject otherwise."

Then $L(R) = \emptyset$ and $L(N_{w,v}) = \{ \Sigma^* \mid M(w) \text{ does not accept} \}$.
So if we define the computable function

\[f(v) = \begin{cases}
\langle R, R \rangle & v \neq \langle M, w \rangle \\
\langle R, N_{M, w} \rangle & v = \langle M, w \rangle,
\end{cases} \]

then clearly \(v \in A_{im} \) iff \(f(v) \in EQ_{im} \).

So \(A_{im} \notin EQ_{im} \), but \(A_{im} \notin \text{co-RE} \), so \(EQ_{im} \notin \text{co-RE} \), hence \(EQ_{im} \notin \text{RE} \).

Now let the TM T be

\[T = \text{"On input } w, \]
\[\text{1) Accept."} \]

So \(L(T) = \Sigma^* \), and we define the computable function

\[f(v) = \begin{cases}
v & v \neq \langle M, w \rangle \\
\langle T, N_{M, w} \rangle & v = \langle M, w \rangle.
\end{cases} \]

Then we have \(v \in A_{im} \) iff \(f(v) \in EQ_{im} \).

So \(A_{im} \notin EQ_{im} \), but \(A_{im} \notin \text{co-RE} \), so \(EQ_{im} \notin \text{co-RE} \).

A few final notes. For a class of languages \(C^* \), we say a language \(A \) is \(C^* \)-HARD if \(\forall B \in C^* \), \(B \leq_m A \). If \(A \) is also a member of \(C^* \), then \(A \) is \(C^* \)-COMPLETE. (\(A \in C^* \) and \(A \in C^* \)-HARD \(\Rightarrow A \in C^* \)-COMPLETE).

Any language \(A \notin \text{RE} \) is necessarily \(\text{RE-HARD} \). Similarly, \(A \notin \text{co-RE} \) implies \(A \in \text{co-RE-HARD} \). To see why this is the case has to do with the arithmetic hierarchy.