Recall that a language L is **recognizable** if there is a TM M for which $L(M) = L$. L is instead **co-recognizable** if $L(M) = \overline{L}$. If L is both in RE (the recognizable languages) and in co-RE (the co-recognizable languages), then $L \in \text{DEC}$ (the decidable languages). If $L \notin \text{DEC}$, then at least one of $L \notin \text{RE}$ and $L \notin \text{co-RE}$ must be true.

We have seen that $A_{TM} \in \text{RE}$, $A_{TM} \notin \text{DEC}$ and $E_{TM} \in \text{co-RE}$ and $E_{TM} \notin \text{DEC}$. There are two more useful undecidable languages to look at before moving on to Rice’s Theorem, a general statement about decidability.

$$\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ halts on } w \}$$

This is the halting problem. Like A_{TM}, it is recognizable. This is easy to show:

$$H = \text{"on input } \langle M, w \rangle, \text{ reject if improperly formatted}$$

1) Run $M(w)$
2) Accept

Clearly, $L(H) = \text{HALT}_{TM}$.

To see that HALT_{TM} is not decidable, assume it is. Then there is a decider D for HALT_{TM}, that is $L(D) = \text{HALT}_{TM}$ and D halts on every input.

Using D, we can construct a decider A for A_{TM}. This is, of course nonsense, so no such D can exist.

Now let’s write down A.

A = "On input \(\langle M, w \rangle \),
1) Run \(D(M, w) \)
2) IF \(D(M, w) \) rejects, reject
3) Run \(M(w) \)
4) IF \(M(w) \) accepts, accept
5) Reject"

Notice that \(A \) is guaranteed to halt, since if \(M(w) \) doesn't halt, we skip steps 3-5. Then we have \(L(A) = A_{TM} \), so \(A \) is a decider for \(A_{TM} \).

The other language of interest to look at is

\[E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \} \]

\(E_{TM} \) \(\notin \text{co-RE} \) is easy to show, just like \(\overline{EQ_{TM}} \notin \text{co-RE} \).

We give a \(TM \) \(N \) for which \(L(M) = E_{TM} \) below.

\(N = " \text{On input } \langle M \rangle,
1) For \ i = 1 \ to \ \infty
 a) For \ j = 1 \ to \ i
 i) Run \ M(w_j) \ for \ i \ steps
 ii) IF \ M(w_j) \ accepted, accept"

Eventually, if \(M \) accepts a string, \(N \) will find it and accept, i.e. \(L(M) \neq \emptyset \).

We now show that \(E_{TM} \) is not decidable by reducing an undecidable language to it, as usual. Let \(D \) be a decider such that \(L(D) = E_{TM} \).
Define the utility T_M $R_{M,v}$ to be

$$R_{M,v} = "\text{On input } w,\"$$

1) If $w \neq v$, reject
2) Run $M(v)$ and accept if M does "

Notice that $L(R_{M,v}) = \{v\}$ if $M(v)$ accepts.

We can now give a decider D' for A_{TM}.

$$D' = "\text{On input } \langle M, v \rangle,\"$$

1) Run $D(R_{M,v})$
2) If $D(R_{M,v})$ accepts, reject
3) Accept "

$D(R_{M,v})$ accepts iff $M(v)$ does not accept. As such,

$$L(D) = \{ \langle M, v \rangle \mid M(v) \text{ accepts} \} = A_{TM}.$$

Moreover, every step of D' is guaranteed to complete, so D' decides A_{TM}

No such D exists, hence $E_{TM} \notin \text{DEC}$.

Notice that this proof reduces A_{TM} not to E_{TM} but rather

$E_{\overline{TM}}$ (we query whether or not $R_{M,v}$ is not empty). In fact, there is no "proper" reduction from A_{TM} to E_{TM} since $A_{TM} \in \text{RE}$ and $E_{TM} \notin \text{RE}$. What we mean by "proper" will come later, but keep this in mind. We reduce problems in RE to problems in RE ($E_{\overline{TM}} \in \text{RE}$ by $E_{TM} \in \text{co-RE}$). Similarly, we reduce problems in co-RE to problems in co-RE.

Now you may have noticed that A_{TM}, E_{TM}, E_{TM}, and $HALT_{TM}$ are all questions about languages. This is no coincidence! Let's turn to Rice's Theorem.