Problem 1. Let $b : \{0, 1\}^+ \rightarrow \mathbb{N}$ be the function that takes a binary string and outputs its binary value. Prove that the language

$$A = \{ x + y = z \mid x, y, z \in \{0, 1\}^+ \text{ such that } b(x) + b(y) = b(z) \}$$

is irregular.

Problem 2. Draw a Turing machine that decides the language

$$B = \{0^k1^m0^k \mid 0 \leq k < m\}.$$

You may assume $\Sigma = \{0, 1\}$.

Problem 3. Recall that a computable function $f : \Sigma^* \rightarrow \Sigma^*$ is one for which there is a Turing machine M such that on all inputs $\omega \in \Sigma^*$, $M(\omega)$ halts with just $f(\omega)$ on its tape.

Show that the function $f(x, y) = x + y$ is computable by drawing a Turing machine for it. Here, x and y are binary numbers (with their most significant bit given first) and their sum in binary should be left on the tape (in the same format). You may assume that $\Sigma = \{0, 1, \#\}$ and that x and y are initially separated by a $\#$.

Problem 4. Show that a language L is decidable if and only if there is an enumerator that enumerates it in lexicographical order. You may assume $\Sigma = \{0, 1\}$.

Problem 5.

a) Prove that RE is closed under union.

b) Prove that co-RE is closed under union.

c) Prove that DEC is closed under union.

Problem 6. A linear bounded automaton (LBA) is a Turing machine with a tape precisely as long as its input. If the machine tries to move its head off either end of the input, the head stays where it is. This is the same way that a head will not move off the left-hand end of a tape in an ordinary Turing machine. Note that the tape may still be modified.

Define the analogous set to A_{TM} for linear bounded automata as

$$A_{LBA} = \{ \langle M, \omega \rangle \mid M \text{ is an LBA and } M(\omega) \text{ accepts} \}.$$

Prove that A_{LBA} is decidable.
Problem 7. Define the analogous set to ALL_{TM} for linear bounded automata as

$$ALL_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA and } L(M) = \Sigma^* \}.$$

Prove that ALL_{LBA} is undecidable but co-recognizable.

Problem 8. For each of the following languages, prove it is undecidable using Rice’s Theorem or show that Rice’s Theorem does not apply. You may assume that $\Sigma = \{0, 1\}$ for each problem.

a) $C = \{ \langle M \rangle \mid M \text{ is a TM and } 10 \in L(M) \}$

b) $D = \{ \langle M \rangle \mid M \text{ is a TM, } L(M) = 0^*, \text{ and } M \text{ visits at most 3 states} \}$

Problem 9. Prove that $A_{TM} \not\leq_m E_{TM}$.

Problem 10. Recall that FIN_{TM} (defined below using strings) is neither recognizable nor co-recognizable.

$$FIN_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } |L(M)| < \infty \}$$

The analogous set $INFIN_{TM}$ is also neither recognizable nor co-recognizable.

$$INFIN_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } |L(M)| = \infty \}$$

That both of these sets are not in RE or $co-RE$ does not preclude us from proving interesting facts about them. Indeed, since they are in neither set, they are in some sense harder than all RE and $co-RE$ problems. This leads to the notion of the arithmetic hierarchy, which classifies a problem’s level of difficulty even beyond ordinary computability. Here we take a first step into this strange new world.

Prove that $FIN_{TM} \leq_m INFIN_{TM}$ and $INFIN_{TM} \leq_m FIN_{TM}$.

(Hint: Remember that the reduction must map all strings correctly)