CSC 341 - Fall 2022
 Third Exam

Due Wednesday, December 14

Problem 1. For each of the following, determine if the statement is true or false. No explanation is necessary.
a) $2 n^{2}+4 n-50^{1000000} \in O\left(n^{2}\right)$
b) $n \in O\left(\sqrt[3]{n^{2}}\right)$
c) If $f \in O(g)$, then $\sin f \in O(\sin g)$
d) $\operatorname{TIME}(n) \subseteq \operatorname{NTIME}(n)$
e) $\operatorname{TIME}(n)=\operatorname{NTIME}(n)$

Problem 2. Prove that if $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$.
Problem 3. Define the language
PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with an $s-t$ path $\}$
Remember that a $s-t$ path in a graph visits each vertex at most once, starts at vertex s, and ends at vertex t.

Prove that $P A T H \in P$.
Problem 4. The longest path problem involves finding the longest path from a source vertex to a destination vertex in a weighted, directed graph. For convenience, we'll assume that the weights on each edge of the graph are integers specified by weight function ω. Then we can encode this as a decision problem as follows.
$L P=\{\langle G, \omega, s, t, k\rangle \mid G$ is a weighted, directed graph and has an $s-t$ path of length at least $k\}$
Remember that a $s-t$ path in a graph visits each vertex at most once, starts at vertex s, and ends at vertex t.

Prove $L P \in N P-C O M P L E T E$.
Problem 5. Let
DOU $B L E-S A T=\{\langle\phi\rangle \mid \phi$ is a Boolean formula with at least two satisfying assignments $\}$.
Prove that $D O U B L E-S A T \in N P-C O M P L E T E$.

Problem 6. There is a distinction to be made between decision problems, those that accept/reject strings for languages, and function problems which, compute a function. For instance, $S A T$ is a decision problem that determines if a given Boolean formula is satisfiable. It does not, however, produce an assignment which satisfies it. The analogous class to $P(N P)$ is $F P(F N P)$, which is the set of function problems that can be solved by a deterministic (nondeterministic) Turing machine in polynomial time.

Show that if $P=N P$, then there is a polynomial time (deterministic) algorithm which produces a satisfying assignment when given a Boolean formula.
(Hint: there exists a deterministic polynomial time algorithm which decides SAT which you can query any polynomial number of times you like)

Problem 7. Prove that if $P=N P$, then every nontrivial (not \varnothing or Σ^{*}) language in P is in $N P-C O M P L E T E$.

Problem 8. Give a language L that is not in $N P$ and prove that $L \notin N P$.
Problem 9. Prove that $P \subseteq N P \cap c o-N P$.
Problem 10. Recall that for a language L to be complete for a language class C, then every language in C must mapping reduce to L (possibly subject to some resource bound) and L must be in C. For P and $N P$, the resource bound is polynomial time. This is also the case for $c o-N P$. A language L is in $c o-N P-C O M P L E T E$ if $L \in c o-N P$ and every language in $c o-N P$ mapping reduces to L in polynomial time.

Prove that if $N P \neq c o-N P$, then no $N P-C O M P L E T E$ language can be in $c o-N P$ nor can any co-NP-COMPLETE language be in $N P$.

