
CSC 341 - Fall 2022
Third Exam

Due Wednesday, December 14

Problem 1. For each of the following, determine if the statement is true or false. No
explanation is necessary.

a) 2n2 ` 4n ´ 501000000 P Opn2q

b) n P Op
3

?
n2q

c) If f P Opgq, then sin f P Opsin gq

d) TIMEpnq Ď NTIMEpnq

e) TIMEpnq “ NTIMEpnq

Problem 2. Prove that if f P Opgq and g P Ophq, then f P Ophq.

Problem 3. Define the language

PATH “ txG, s, ty | G is a directed graph with an s´t pathu

Remember that a s´t path in a graph visits each vertex at most once, starts at vertex s,
and ends at vertex t.

Prove that PATH P P .

Problem 4. The longest path problem involves finding the longest path from a source
vertex to a destination vertex in a weighted, directed graph. For convenience, we’ll assume
that the weights on each edge of the graph are integers specified by weight function ω.
Then we can encode this as a decision problem as follows.

LP “ txG,ω, s, t, ky | G is a weighted, directed graph and has an s´t path of length at least ku

Remember that a s´t path in a graph visits each vertex at most once, starts at vertex s,
and ends at vertex t.

Prove LP P NP´COMPLETE.

Problem 5. Let

DOUBLE´SAT “ txϕy | ϕ is a Boolean formula with at least two satisfying assignmentsu.

Prove that DOUBLE´SAT P NP´COMPLETE.
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Problem 6. There is a distinction to be made between decision problems, those that
accept/reject strings for languages, and function problems which, compute a function.
For instance, SAT is a decision problem that determines if a given Boolean formula is
satisfiable. It does not, however, produce an assignment which satisfies it. The analogous
class to P pNP q is FP pFNP q, which is the set of function problems that can be solved
by a deterministic (nondeterministic) Turing machine in polynomial time.

Show that if P “ NP , then there is a polynomial time (deterministic) algorithm which
produces a satisfying assignment when given a Boolean formula.

(Hint: there exists a deterministic polynomial time algorithm which decides SAT
which you can query any polynomial number of times you like)

Problem 7. Prove that if P “ NP , then every nontrivial (not H or Σ˚) language in P
is in NP´COMPLETE.

Problem 8. Give a language L that is not in NP and prove that L R NP .

Problem 9. Prove that P Ď NP X co´NP .

Problem 10. Recall that for a language L to be complete for a language class C, then
every language in C must mapping reduce to L (possibly subject to some resource bound)
and L must be in C. For P and NP , the resource bound is polynomial time. This is
also the case for co´NP . A language L is in co´NP´COMPLETE if L P co´NP and
every language in co´NP mapping reduces to L in polynomial time.

Prove that if NP ‰ co´NP , then no NP´COMPLETE language can be in co´NP
nor can any co´NP´COMPLETE language be in NP .
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