
CSC 341 - Fall 2022
Problem Set 6 Solutions

Problem 1. Draw a TM M which decides the language A “ tanbncn | n ě 0u, where the
input alphabet Σ “ ta, b, cu.

Solution 1. The principle of this Turing machine is to sweep right while checking for
an a, a b, and a c in that order without breaking the formatting. We mark the ones we
find until we run out of one type. When we do, if we did not run out of a’s first, then we
reject. If we did run out of a’s first, we need only check that we’re also out of b’s and c’s.

For the sake of clarity, all missing transitions in the Turing machine below go to the
rejecting state.
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Problem 2. Give an algorithm for a TM M which decides the language

C “ txD,ωy | D is a DFA and D accepts ωu.

Note that xD,ωy is some reversible encoding of D and ω into a string. The precise details
of how this encoding is computed is irrelevant to the algorithm you give. The key point is
you have access to each parameter.

Solution 2. Since a DFA is not entirely compatible with Turing machines (it doesn’t
know its own input, for example), we need to give a little more information than just use
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the universal Turing machine U to simulate D on ω. We will give a slightly more verbose
answer than is strictly necessary for the sake of completeness.

Define the Turing machine M to be

M “ On input ν

1. If ν ‰ xD,ωy, then reject

2. Let D “ pQ,Σ, δ, q0, F q

3. Let ω “ ω1 . . . ω|ω|

4. Let q “ q0

5. For i = 1 to |ω|

(a) Compute δpq, ωiq “ q1

(b) Assign q “ q1

6. Accept if q P F and reject otherwise

Each step of M is computable and is guaranteed to complete, so M halts. Moreover,
M exactly simulates D on ω, so LpMq “ C.

Problem 3. To prove that enumerators are equivalent to Turing machines, we created
an enumerator E given a TM M such that LpEq “ LpMq. The algorithm for this is given
below.

E “ ”Ignore input,

1. For i “ 1 to 8

(a) For j “ 1 to i

i. Run M on input ωj for i steps (ωj is the jth element of Σ˚)

ii. If M accepts, print ωj”

Explain why the following algorithm for E does not work.

E “ ”Ignore input,

1. For i “ 1 to 8

(a) Run M on input ωi (ωi is the ith element of Σ˚)

(b) If M accepts, print ωi”

Solution 3. The trouble with the second algorithm is that M is not guaranteed to halt
on any particular string. Suppose M loops forever on string ωi but there is some ωj with
j ą i that M accepts (it is trivial to show such an M exists). Then E will never output
ωj.

Problem 4. For a string ω P t0, 1u
`, the one’s compliment of ω, written ω, is obtained

by inverting all of its bits (flipping 0 to 1 and 1 to 0).
Draw a TM which, on input ω P t0, 1u

`, reaches some accepting configuration with
exactly ω on the tape. If M ’s input is ϵ, it should enter a rejecting configuration with
nothing on the tape.

In other words, give a TM which converts its input ω into ω and accepts (or rejects if
ω “ ϵ). The head may point anywhere on the tape when it halts.
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Solution 4. As there’s no requirement for the head’s position upon termination, for this
TM, we need only greedily change 0’s into 1’s and vice versa.

q0

qreject

q1

qaccept

\ Ñ L

0|1 Ñ L 0 Ñ 1, R
1 Ñ 0, R

\ Ñ R

Problem 5. Draw a TM M which, on input ω P t0, 1u
`, reaches the accepting configura-

tion qaω. If M ’s input is ϵ, it should enter the rejecting configuration qrϵ.
In other words, M converts its input ω into ω and accepts with the head pointing to

the first cell (i.e. the head is as far left as possible). If M ’s input is ϵ, it instead rejects
with the head pointing to the first cell on the tape (a blank cell).

Solution 5. This solution is the same as the prior problem’s, except we must reset the
head to the first position after we finish. This can easily be achieved by marking the first
cell position to rewind to.

q0

qreject

q1

q2 qaccept

\ Ñ L

0 Ñ 91, R
1 Ñ 90, R 0 Ñ 1, R

1 Ñ 0, R

\ Ñ L

0|1 Ñ L

90 Ñ 0, L
91 Ñ 1, L
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