CSC 341 - Fall 2022 Problem Set 7 Solutions

Problem 1. We defined the language A_{TM} to be the set of $\langle M, \omega \rangle$ such that $M(\omega)$ accepts. Prove that $\overline{A_{TM}}$ is not recognizable. You may assume that A_{TM} is not decidable.

Solution 1. We know that $A_{TM} \in RE$ and that $A_{TM} \notin DEC$. Thus $A_{TM} \notin co-RE$, and therefore $\overline{A_{TM}} \notin RE$.

Problem 2. The set of all strings, Σ^* , is countable. This means there is a (computable) bijection $\phi : \mathbb{N} \to \Sigma^*$ that enumerates Σ^* . As a consequence, this readily yields a notion of subsets of the natural numbers being recognizable.

Let $L \subseteq \mathbb{N}$. We say that L is *recognizable* if there is a Turing machine M for which

$$L(M) = \{\phi(n) \mid n \in L\}.$$

Generally, we leave ϕ implicit and simply allow M to accept a natural number input n.

Give a definition of recognizability for any countable set S and prove that it is equivalent to the definition for \mathbb{N} .

Solution 2. This could be considered a double trick question. Let S be a countable set. Then there is some bijection $\psi : S \to \Sigma^*$. Consider the case $S = A_{TM}$. If ϕ were computable, then the language Σ^* is decidable, which would make $\psi^{-1}(\Sigma^*) = A_{TM}$ decidable as well. However, there is a key point to recognize here: we don't ever compute the symbols in S. We are not required to compute ψ at any point. The elements of S are just labels, and if the labels happen to look like something not computable, try not to look at them so hard.

We now give a definition of recognizability. Let S be a countable set. If S is finite, then it is decidable, so assume S is infinite. Then there is some bijection $\psi : S \to \Sigma^*$. We say that a subset $S' \subseteq S$ is *recognizable* if there is a Turing machine M for which

$$L(M) = \{\psi(s) \mid s \in S'\}.$$

To see why this definition is equivalent to the definition of recognizability, first notice that \mathbb{N} is a countable set. As such, if $N \subseteq \mathbb{N}$ is recognizable with respect to the natural numbers definition, then it is with respect to the general definition as well.

Next, suppose $S' \subseteq S$ is recognizable. Now consider the set $A = \psi(S')$. We know that there is a TM M which recognizes the language A. But then M also recognizes the language $\phi(\phi^{-1}(A)) = A$, so $\phi^{-1}(A) \subseteq \mathbb{N}$ is recognizable. \Box

Problem 3. Prove that the language

$$S = \{(i, j) \mid M_i(j) \text{ accepts}\}$$

is recognizable but not decidable, where M_i is the i^{th} Turing machine and j corresponds to the j^{th} string in Σ^* (see problem 2).

Solution 3. Pick ψ to be the bijection which maps $\mathbb{N} \times \mathbb{N}$ to Σ^* in the definition of recognizability. Since we know A_{TM} is recognizable but not decidable, it suffices to show that there is a (in this case) *computable* bijection ϕ between $\psi(S)$ and A_{TM} such that $\omega \in \psi(S)$ iff $\phi(\omega) \in A_{TM}$.

There is some computable (and reversible) bijective encoding E that maps pairs of Turing machine descriptions with an input string to strings in Σ^* for $\psi(S)$. There is another one for A_{TM} . Call this one E'. Then we can map $\psi(S)$ to A_{TM} via $E'(E^{-1}(\psi(S))) = A_{TM}$.

Problem 4. Prove that the language

$$K = \{i \mid M_i(i) \text{ halts}\}$$

is recognizable (see problem 2).

Now prove that the language

$$\overline{K} = \{i \mid M_i(i) \text{ does not halt}\}\$$

is not recognizable (i.e. K is not co-recognizable).

Solution 4. We first prove that K is recognizable. To do so, we give a Turing machine M for it.

M = "On input i,

- 1. Run M_i on the i^{th} string of Σ^*
- 2. Accept"

Clearly, M accepts i if and only if the i^{th} Turing machine halts on the i^{th} string of Σ^* , so L(M) = K.

We now show that \overline{K} is not recognizable. To do so, we give a mapping reduction f from S (from the previous problem which is not co-recognizable) to K so that $(i, j) \in S$ iff $f(i, j) \in K$.

Define the TM $N_{i,j}$ to be the TM which on input k runs $M_i(j)$ and accepts if $M_i(j)$ accepts and loops forever otherwise. In other words, $N_{i,j}$ halts iff $M_i(j)$ accepts. Since $N_{i,j}$ is a TM, there is some computable function σ such that for all (i, j), $N_{i,j}$ is the $\sigma(i, j)^{th}$ TM. Then if $f(i, j) = \sigma(i, j)$, we have that $(i, j) \in S$ iff $\sigma(i, j) \in K$ as desired. Thus $S \leq_m K$, and since S is not co-recognizable, it follows that K is not co-recognizable, hence \overline{K} is not recognizable.

Problem 5. Prove that the language

$$FIN_{TM} = \{i \mid |L(M_i)| < \infty\}$$

is neither recognizable nor co-recognizable (see problem 2). (Hint: Both results can arise from a reduction from \overline{K} . One is easy. The other is not.)

Solution 5. We'll prove both $\overline{K} \leq_m FIN_{TM}$ and $\overline{K} \leq_m \overline{FIN_{TM}}$. Since \overline{K} is not recognizable, it will then follow that FIN_{TM} is neither recognizable nor co-recognizable. Before proceeding, let k be the computable function that maps Turing machines to \mathbb{N} .

We first prove $\overline{K} \leq_m FIN_{TM}$. Define the TM N_i to be as follows.

 $N_i =$ "On input j,

1. Run $M_i(i)$

2. Accept"

Notice that $L(N_i) = \emptyset$ if $M_i(i)$ doesn't halt and $L(N_i) = \Sigma^*$ if $M_i(i)$ does halt. If we define the function $f(i) = k(N_i)$, then we have the following. $i \in \overline{K}$ iff $M_i(i)$ does not halt. But $L(N_i)$ is finite iff $M_i(i)$ does not halt. So we have $i \in \overline{K}$ iff $f(i) \in FIN_{TM}$.

We now prove that $\overline{K} \leq_m \overline{FIN_{TM}}$. Define the TM N_i to be as follows.

 $N_i =$ "On input j,

- 1. Run $M_i(i)$ for j steps
- 2. Accept if $M_i(i)$ did not halt and reject otherwise"

If $M_i(i)$ halts, then it does so in some finite number of steps j^* . In this case, $|L(N_i)| = j^* - 1$. However, if $M_i(i)$ does not halt, then N_i accepts every input. So we have that $L(N_i)$ is infinite iff $M_i(i)$ does not halt. Thus if we define the function $f(i) = k(N_i)$, we get that $i \in \overline{K}$ iff $M_i(i)$ does not halt. This gives us that $i \in \overline{K}$ iff $f(i) \in \overline{FIN_{TM}}$. \Box