
CSC 341 - Fall 2022
Problem Set 7 Solutions

Problem 1. We defined the language ATM to be the set of xM,ωy such that Mpωq

accepts. Prove that ATM is not recognizable. You may assume that ATM is not decidable.

Solution 1. We know that ATM P RE and that ATM R DEC. Thus ATM R co´RE, and
therefore ATM R RE.

Problem 2. The set of all strings, Σ˚, is countable. This means there is a (computable)
bijection ϕ : N Ñ Σ˚ that enumerates Σ˚. As a consequence, this readily yields a notion
of subsets of the natural numbers being recognizable.

Let L Ď N. We say that L is recognizable if there is a Turing machine M for which

LpMq “ tϕpnq | n P Lu.

Generally, we leave ϕ implicit and simply allow M to accept a natural number input n.
Give a definition of recognizability for any countable set S and prove that it is equivalent

to the definition for N.

Solution 2. This could be considered a double trick question. Let S be a countable
set. Then there is some bijection ψ : S Ñ Σ˚. Consider the case S “ ATM . If ϕ were
computable, then the language Σ˚ is decidable, which would make ψ´1pΣ˚q “ ATM

decidable as well. However, there is a key point to recognize here: we don’t ever compute
the symbols in S. We are not required to compute ψ at any point. The elements of S are
just labels, and if the labels happen to look like something not computable, try not to
look at them so hard.

We now give a definition of recognizability. Let S be a countable set. If S is finite,
then it is decidable, so assume S is infinite. Then there is some bijection ψ : S Ñ Σ˚. We
say that a subset S 1 Ď S is recognizable if there is a Turing machine M for which

LpMq “ tψpsq | s P S 1
u.

To see why this definition is equivalent to the definition of recognizability, first notice
that N is a countable set. As such, if N Ď N is recognizable with respect to the natural
numbers definition, then it is with respect to the general definition as well.

Next, suppose S 1 Ď S is recognizable. Now consider the set A “ ψpS 1q. We know
that there is a TM M which recognizes the language A. But then M also recognizes the
language ϕpϕ´1pAqq “ A, so ϕ´1pAq Ď N is recognizable.

Problem 3. Prove that the language

S “ tpi, jq | Mipjq acceptsu

is recognizable but not decidable, where Mi is the i
th Turing machine and j corresponds

to the jth string in Σ˚ (see problem 2).
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Solution 3. Pick ψ to be the bijection which maps N ˆ N to Σ˚ in the definition of
recognizability. Since we know ATM is recognizable but not decidable, it suffices to show
that there is a (in this case) computable bijection ϕ between ψpSq and ATM such that
ω P ψpSq iff ϕpωq P ATM .

There is some computable (and reversible) bijective encoding E that maps pairs of
Turing machine descriptions with an input string to strings in Σ˚ for ψpSq. There is another
one for ATM . Call this one E 1. Then we can map ψpSq to ATM via E 1pE´1pψpSqqq “

ATM .

Problem 4. Prove that the language

K “ ti | Mipiq haltsu

is recognizable (see problem 2).
Now prove that the language

K “ ti | Mipiq does not haltu

is not recognizable (i.e. K is not co-recognizable).

Solution 4. We first prove that K is recognizable. To do so, we give a Turing machine
M for it.

M “ ”On input i,

1. Run Mi on the ith string of Σ˚

2. Accept”

Clearly, M accepts i if and only if the ith Turing machine halts on the ith string of Σ˚,
so LpMq “ K.

We now show that K is not recognizable. To do so, we give a mapping reduction f
from S (from the previous problem which is not co-recognizable) to K so that pi, jq P S
iff fpi, jq P K.

Define the TM Ni,j to be the TM which on input k runs Mipjq and accepts if Mipjq
accepts and loops forever otherwise. In other words, Ni,j halts iff Mipjq accepts. Since
Ni,j is a TM, there is some computable function σ such that for all pi, jq, Ni,j is the
σpi, jqth TM. Then if fpi, jq “ σpi, jq, we have that pi, jq P S iff σpi, jq P K as desired.
Thus S ďm K, and since S is not co-recognizable, it follows that K is not co-recognizable,
hence K is not recognizable.

Problem 5. Prove that the language

FINTM “ ti | |LpMiq| ă 8u

is neither recognizable nor co-recognizable (see problem 2). (Hint: Both results can arise
from a reduction from K. One is easy. The other is not.)

Solution 5. We’ll prove both K ďm FINTM and K ďm FINTM . Since K is not
recognizable, it will then follow that FINTM is neither recognizable nor co-recognizable.
Before proceeding, let k be the computable function that maps Turing machines to N.

We first prove K ďm FINTM . Define the TM Ni to be as follows.

Ni “ ”On input j,
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1. Run Mipiq

2. Accept”

Notice that LpNiq “ H if Mipiq doesn’t halt and LpNiq “ Σ˚ if Mipiq does halt. If we
define the function fpiq “ kpNiq, then we have the following. i P K iff Mipiq does not
halt. But LpNiq is finite iff Mipiq does not halt. So we have i P K iff fpiq P FINTM .

We now prove that K ďm FINTM . Define the TM Ni to be as follows.

Ni “ ”On input j,

1. Run Mipiq for j steps

2. Accept if Mipiq did not halt and reject otherwise”

If Mipiq halts, then it does so in some finite number of steps j˚. In this case, |LpNiq| “

j˚ ´ 1. However, if Mipiq does not halt, then Ni accepts every input. So we have that
LpNiq is infinite iff Mipiq does not halt. Thus if we define the function fpiq “ kpNiq, we
get that i P K iff Mipiq does not halt. This gives us that i P K iff fpiq P FINTM .
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