CSC 341 - Fall 2022
Problem Set 7 Solutions

Problem 1. We defined the language A7y to be the set of (M,w) such that M (w)
accepts. Prove that Apjs is not recognizable. You may assume that Ay, is not decidable.

Solution 1. We know that Ay, € RE and that Apy ¢ DEC. Thus Ary ¢ co—RE, and
therefore Ary ¢ RE. O

Problem 2. The set of all strings, ¥*, is countable. This means there is a (computable)
bijection ¢ : N — ¥* that enumerates X*. As a consequence, this readily yields a notion
of subsets of the natural numbers being recognizable.

Let L < N. We say that L is recognizable if there is a Turing machine M for which

L(M) = {6(n) | n e L}.

Generally, we leave ¢ implicit and simply allow M to accept a natural number input n.
Give a definition of recognizability for any countable set S and prove that it is equivalent
to the definition for N.

Solution 2. This could be considered a double trick question. Let S be a countable
set. Then there is some bijection 1 : S — ¥*. Consider the case S = Apy. If ¢ were
computable, then the language ©* is decidable, which would make ¥ ~1(X*) = Az,
decidable as well. However, there is a key point to recognize here: we don’t ever compute
the symbols in S. We are not required to compute 1) at any point. The elements of S are
just labels, and if the labels happen to look like something not computable, try not to
look at them so hard.

We now give a definition of recognizability. Let S be a countable set. If S is finite,
then it is decidable, so assume S is infinite. Then there is some bijection ¢ : S — ¥*. We
say that a subset S’ € S is recognizable if there is a Turing machine M for which

L(M) = {4(s) | se S'}.

To see why this definition is equivalent to the definition of recognizability, first notice
that N is a countable set. As such, if N € N is recognizable with respect to the natural
numbers definition, then it is with respect to the general definition as well.

Next, suppose S’ < S is recognizable. Now consider the set A = 1(S"). We know
that there is a TM M which recognizes the language A. But then M also recognizes the
language ¢(¢~1(A)) = A, so ¢ (A) = N is recognizable. O

Problem 3. Prove that the language
S = {(i,) | My(j) accepts)

is recognizable but not decidable, where M; is the i** Turing machine and j corresponds
to the ji string in X* (see problem 2).



Solution 3. Pick ¥ to be the bijection which maps N x N to X* in the definition of
recognizability. Since we know A7), is recognizable but not decidable, it suffices to show
that there is a (in this case) computable bijection ¢ between ¥ (S) and Arys such that
w e Y(9) iff p(w) € Aras.

There is some computable (and reversible) bijective encoding F that maps pairs of

Turing machine descriptions with an input string to strings in * for ¢)(S). There is another
one for Arys. Call this one E’. Then we can map ¥(S) to Ary via E'(E7Y(y)(S5))) =
ATM' ]

Problem 4. Prove that the language
K = {i | M;(i) halts}

is recognizable (see problem 2).
Now prove that the language

K = {i | M;(i) does not halt}
is not recognizable (i.e. K is not co-recognizable).

Solution 4. We first prove that K is recognizable. To do so, we give a Turing machine
M for it.

M = 7On input 7,
1. Run M; on the i" string of ¥*
2. Accept”

Clearly, M accepts 4 if and only if the i* Turing machine halts on the i string of 3X*,
so L(M) = K.

We now show that K is not recognizable. To do so, we give a mapping reduction f
from S (from the previous problem which is not co-recognizable) to K so that (i,j) € S
iff f(i,5) € K.

Define the TM N, ; to be the TM which on input k runs M;(j) and accepts if M;(j)
accepts and loops forever otherwise. In other words, N;; halts iff M;(j) accepts. Since
N;; is a TM, there is some computable function ¢ such that for all (4, ), N;; is the
o(i, j)™ TM. Then if f(i,j) = o(i,j), we have that (i,7) € S iff o(i,) € K as desired.
Thus S <,, K, and since S is not co-recognizable, it follows that K is not co-recognizable,
hence K is not recognizable. O]

Problem 5. Prove that the language

is neither recognizable nor co-recognizable (see problem 2). (Hint: Both results can arise
from a reduction from K. One is easy. The other is not.)

Solution 5. We'll prove both K <,, FINry and K <,, FINry. Since K is not

recognizable, it will then follow that F'I Ny, is neither recognizable nor co-recognizable.

Before proceeding, let k be the computable function that maps Turing machines to N.
We first prove K <,, FINpy;. Define the TM N; to be as follows.

N; = 7On input j,



1. Run M, (i)
2. Accept”

Notice that L(N;) = & if M;(i) doesn’t halt and L(N;) = X* if M;(i) does halt. If we
define the function f(i) = k(N;), then we have the following. i € K iff M;(i) does not
halt. But L(N;) is finite iff M;(i) does not halt. So we have i € K iff f(i) € FINpy.

We now prove that K <,, FINpy;. Define the TM N; to be as follows.

N; = 70On input 7,
1. Run M;(i) for j steps
2. Accept if M;(7) did not halt and reject otherwise”

If M;(7) halts, then it does so in some finite number of steps j*. In this case, |L(NV;)| =
j* — 1. However, if M;(i) does not halt, then N; accepts every input. So we have that
L(N;) is infinite iff M;(i) does not halt. Thus if we define the function f(i) = k(N;), we
get that ¢ € K iff M;(i) does not halt. This gives us that i € K iff f(i) € FINgy;. O



