
CSC 341 - Fall 2022
Problem Set 8 Solutions

Problem 1. Prove that log n P Op
?
nq.

Solution 1. It suffices to find a c ą 0 and an N ą 0 such that when n ě N , we have
log n ď c

?
n. We can pick c “ 1 and N “ 1.

To show why these choices work, we need to prove that log n ď
?
n for n P N when

n ě 1. We can do this with strong induction.
When 1 ď n ă 15, we can manually check that the inequality holds. This is left as an

exercise for the reader.
Now assume that log k ď

?
k for 1 ď k ď n. If n ă 15, we’re done. So assume n ě 15.

Thus we have

log n ` 1 “ 1 ` log
n ` 1

2

ď 1 `

c

n ` 1

2

“ 1 `

c

1

2

?
n ` 1

ă 1 `
3

4

?
n ` 1

ď
?
n ` 1.

For the last step, note that when n ě 15,
?
n ` 1 ě 4. Then because

?
n is an increasing

function, we have 1 ` 3
4

?
n ` 1 ď 1

4

?
n ` 1 ` 3

4

?
n ` 1 “

?
n ` 1.

Problem 2. Prove that 1 R Op0q.

Solution 2. We need to show for every c ą 0 and N ą 0 that 1 ą c ¨0. Clearly, the choice
of N doesn’t matter since n does not appear in the inequality. Moreover, c ¨ 0 “ 0 ă 1, so
we’re done.

Problem 3. Prove the following implication using the non-limit definition of big-oh. If
f1 P Opg1q and f2 P Opg2q, then f1f2 P Opg1g2q.

Solution 3. Let f1 P Opg1q and f2 P Opg2q. By definition, there is a c1 ą 0 and N1 P N
such that when n ě N1, f1pnq ď cg1pnq. Also by definition, there is a c2 ą 0 and N2 P N
such that when n ě N2, f2pnq ď cg2pnq.

Pick N “ maxpN1, N2q. Note that f1, f2 ě 0, so we don’t need to worry about sign.
Then when n ě N , we have

pf1f2qpnq “ f1pnqf2pnq

ď pc1g1pnqqpc2g2pnqq

“ pc1c2qpg1pnqg2pnqq

“ pc1c2qpg1g2qpnq
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So pick c “ c1c2, and we’re done.

Problem 4. Prove the following implication using the non-limit definition of big-oh. If
f1 P Opg1q and f2 P Opg2q, then f1 ` f2 P Opmaxpg1, g2qq.

Solution 4. Let f1 P Opg1q and f2 P Opg2q. By definition, there is a c1 ą 0 and N1 P N
such that when n ě N1, f1pnq ď cg1pnq. Also by definition, there is a c2 ą 0 and N2 P N
such that when n ě N2, f2pnq ď cg2pnq.

Pick N “ maxpN1, N2q. Then when n ě N , we have

pf1 ` f2qpnq “ f1pnq ` f2pnq

ď pc1g1pnqq ` pc2g2pnqq

ď pc1 ` c2qmaxpg1pnq, g2pnqq

“ pc1 ` c2qmaxpg1, g2qpnq

So pick c “ c1 ` c2, and we’re done.

Problem 5. Show that the following language is in P .

SORTED “ txAy | A is a sorted list of natural numbersu

You may assume that each number in A is separated by a #. The numbers are encoded
into binary form.

Solution 5. All we have to do is give a polynomial time deterministic algorithm to decide
SORTED.

First note that we can compare two natural numbers (encoded into binary) in polyno-
mial time. All we have to do is check if one number has more significant bits (non-leading
zeros). If they have the same number of significant bits, we compare most significant bits.
If the most significant bits are equal, we mark them off and repeat the comparison. If we
run out of bits, they’re equal and we accept.

So our Turing machine S for deciding SORTED is as follows.

S “ ”On input xAy,

1. Check if there are at least two unprocessed numbers remaining

2. If not, accept

3. Compare the first unprocessed number with the next

4. If they are out of order, reject

5. If not, mark the first unprocessed number as processed

6. Goto (1)”

Clearly, S decides SORTED. Moreover, it performs at most a linear number of
comparisons, each of which require polynomial time. Thus S runs in (deterministic)
polynomial time.
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