CSC 341 - Fall 2022
 Problem Set 8 Solutions

Problem 1. Prove that $\log n \in O(\sqrt{n})$.
Solution 1. It suffices to find a $c>0$ and an $N>0$ such that when $n \geqslant N$, we have $\log n \leqslant c \sqrt{n}$. We can pick $c=1$ and $N=1$.

To show why these choices work, we need to prove that $\log n \leqslant \sqrt{n}$ for $n \in \mathbb{N}$ when $n \geqslant 1$. We can do this with strong induction.

When $1 \leqslant n<15$, we can manually check that the inequality holds. This is left as an exercise for the reader.

Now assume that $\log k \leqslant \sqrt{k}$ for $1 \leqslant k \leqslant n$. If $n<15$, we're done. So assume $n \geqslant 15$. Thus we have

$$
\begin{aligned}
\log n+1 & =1+\log \frac{n+1}{2} \\
& \leqslant 1+\sqrt{\frac{n+1}{2}} \\
& =1+\sqrt{\frac{1}{2}} \sqrt{n+1} \\
& <1+\frac{3}{4} \sqrt{n+1} \\
& \leqslant \sqrt{n+1}
\end{aligned}
$$

For the last step, note that when $n \geqslant 15, \sqrt{n+1} \geqslant 4$. Then because \sqrt{n} is an increasing function, we have $1+\frac{3}{4} \sqrt{n+1} \leqslant \frac{1}{4} \sqrt{n+1}+\frac{3}{4} \sqrt{n+1}=\sqrt{n+1}$.
Problem 2. Prove that $1 \notin O(0)$.
Solution 2. We need to show for every $c>0$ and $N>0$ that $1>c \cdot 0$. Clearly, the choice of N doesn't matter since n does not appear in the inequality. Moreover, $c \cdot 0=0<1$, so we're done.
Problem 3. Prove the following implication using the non-limit definition of big-oh. If $f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right)$, then $f_{1} f_{2} \in O\left(g_{1} g_{2}\right)$.
Solution 3. Let $f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right)$. By definition, there is a $c_{1}>0$ and $N_{1} \in \mathbb{N}$ such that when $n \geqslant N_{1}, f_{1}(n) \leqslant c g_{1}(n)$. Also by definition, there is a $c_{2}>0$ and $N_{2} \in \mathbb{N}$ such that when $n \geqslant N_{2}, f_{2}(n) \leqslant c g_{2}(n)$.

Pick $N=\max \left(N_{1}, N_{2}\right)$. Note that $f_{1}, f_{2} \geqslant 0$, so we don't need to worry about sign. Then when $n \geqslant N$, we have

$$
\begin{aligned}
\left(f_{1} f_{2}\right)(n) & =f_{1}(n) f_{2}(n) \\
& \leqslant\left(c_{1} g_{1}(n)\right)\left(c_{2} g_{2}(n)\right) \\
& =\left(c_{1} c_{2}\right)\left(g_{1}(n) g_{2}(n)\right) \\
& =\left(c_{1} c_{2}\right)\left(g_{1} g_{2}\right)(n)
\end{aligned}
$$

So pick $c=c_{1} c_{2}$, and we're done.
Problem 4. Prove the following implication using the non-limit definition of big-oh. If $f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right)$, then $f_{1}+f_{2} \in O\left(\max \left(g_{1}, g_{2}\right)\right)$.

Solution 4. Let $f_{1} \in O\left(g_{1}\right)$ and $f_{2} \in O\left(g_{2}\right)$. By definition, there is a $c_{1}>0$ and $N_{1} \in \mathbb{N}$ such that when $n \geqslant N_{1}, f_{1}(n) \leqslant c g_{1}(n)$. Also by definition, there is a $c_{2}>0$ and $N_{2} \in \mathbb{N}$ such that when $n \geqslant N_{2}, f_{2}(n) \leqslant c g_{2}(n)$.

Pick $N=\max \left(N_{1}, N_{2}\right)$. Then when $n \geqslant N$, we have

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(n) & =f_{1}(n)+f_{2}(n) \\
& \leqslant\left(c_{1} g_{1}(n)\right)+\left(c_{2} g_{2}(n)\right) \\
& \leqslant\left(c_{1}+c_{2}\right) \max \left(g_{1}(n), g_{2}(n)\right) \\
& =\left(c_{1}+c_{2}\right) \max \left(g_{1}, g_{2}\right)(n)
\end{aligned}
$$

So pick $c=c_{1}+c_{2}$, and we're done.
Problem 5. Show that the following language is in P.

$$
\text { SORTED }=\{\langle A\rangle \mid A \text { is a sorted list of natural numbers }\}
$$

You may assume that each number in A is separated by a $\#$. The numbers are encoded into binary form.

Solution 5. All we have to do is give a polynomial time deterministic algorithm to decide SORTED.

First note that we can compare two natural numbers (encoded into binary) in polynomial time. All we have to do is check if one number has more significant bits (non-leading zeros). If they have the same number of significant bits, we compare most significant bits. If the most significant bits are equal, we mark them off and repeat the comparison. If we run out of bits, they're equal and we accept.

So our Turing machine S for deciding $S O R T E D$ is as follows.
$S="$ On input $\langle A\rangle$,

1. Check if there are at least two unprocessed numbers remaining
2. If not, accept
3. Compare the first unprocessed number with the next
4. If they are out of order, reject
5. If not, mark the first unprocessed number as processed
6. Goto (1)"

Clearly, S decides $S O R T E D$. Moreover, it performs at most a linear number of comparisons, each of which require polynomial time. Thus S runs in (deterministic) polynomial time.

