
CSC 341 - Fall 2022
Problem Set 9 Solutions

Problem 1. Prove that the following language is in NP .

PRIME “ txpy | p is primeu

You should not use the fact that PRIME P P to show this.

Solution 1. It occurs to me that there’s more number theory involved here than is
probably fair to draw upon. This problem will be thrown out.

On a side note, you cannot nondeterministically decide the compliment of this set and
invert the output. This is because when simulating a NTM, you only get to see one branch
of its computation at a time. Consider the case when you have p “ 4. Then if you test if
it’s divisible by 2 and accept, you say, yes, it’s in PRIME. However, if you test if it’s
divisible by 3 and reject, you still say it’s in PRIME, however, there is a computational
branch where, when you invert the rejection, you now accept p and say that 4 is prime,
which it is not.

Problem 2. The partition problem is as follows. Given a finite set of natural numbers S,
determine if there is a S 1 Ď S such that the sum of the elements of S 1 is equal to the sum
of the elements in SzS 1.

Prove that the following language is in NP .

PARTITION “ txSy | S has a partitionu

Solution 2. It suffices to give a polynomial time verifier V for PARTITION .

V = “On input xxSy, cy,

1. Check that c “ S 1 Ď S and reject if not

2. Let a be the sum of the elements of S 1

3. Let b be the sum of the elements of SzS 1

4. If a ‰ b, reject

5. Accept”

Problem 3. Recall that the subset sum problem is as follows. Given a finite set of natural
numbers S and a natural number t, determine if there is a S 1 Ď S such that the sum of
the elements of S 1 is t. The subset-sum language is then

SUBSET´SUM “ txS, ty | S has a subset whose elements sum to tu.

Prove that PARTITION ďp
m SUBSET´SUM and SUBSET´SUM ďp

m PARTITION .
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Solution 3. Before we begin, a note. Notice that on this homework, we used a variant
of subset sum and partition which deals with finite sets of natural numbers instead of
multisets of integers. This makes things somewhat more complicated for the second
reduction. Regardless, we proceed.

The first (polynomial time) reduction PARTITION ďp
m SUBSET´SUM is trivial.

Given a set of natural numbers S, define

T “
ÿ

aPS

a.

Then we define tpnq to be n
2
if n is even and n` 1 if n is odd. We claim that the function

fpxSyq “ xS, tpT qy is a reduction from PARTITION to SUBSET´SUM .
First, assume we have a partition of S into S 1 and SzS 1. Then it follows that T is even,

so tpT q is exactly half the sum of the elements of S, which is the sum of the elements of
S 1. Thus S has a subset sum equal to tpT q.

Now assume that S has a subset sum equal to tpT q. Then T must be even, since when
T is odd, no subset of S can possibly sum to tpT q “ T ` 1. Then there is a subset sum
equal to half the total sum of the elements of S, which results in a partition of S.

We now give the (polynomial time) reduction in the opposite direction. This is we
prove SUBSET´SUM ďp

m PARTITION . Given a set of natural numbers S and a
natural number t, define

T “
ÿ

aPS

a.

Without loss of generality, suppose that |T ´ 2t| R S (we can always add a huge number
to S that guarantees this difference is not in the set without affecting the result or the
reduction runtime). Define the set

St “ SYt|T ´ 2t|u.

Notice that the sum of all the elements of St, which we will call σ, is equal to T ` |T ´ 2t|.
When 2t ď T , we have σ “ 2pT ´ tq, whereas when 2t ą T , we have σ “ 2t. We claim that
the function fpxS, tyq “ xSty is a reduction from SUBSET´SUM to PARTITION .

Assume that there is a subset S 1 of S with sum equal to t. Then when 2t ď T , adding
|T ´ 2t| to S 1 produces a partition of St, since the sum of the elements of this new set has
value T ´ t, which is exactly 1

2
σ. When 2t ą T , σ “ 2t, so S 1 is already a partition of St.

Now assume that there is a partition S 1 of St. Then either S 1 or StzS
1 must contain

|T ´ 2t|. Without loss of generality, assume it is the former. Then when 2t ď T , if we
remove |T ´ 2t| from S 1, the sum of the elements of S 1 is

1

2
σ “

1

2
2pT ´ tq ´ pT ´ 2tq “ T ´ t´ T ` 2t “ t,

so S contained a subset with sum equal to t. On the other hand, when 2t ą T , the sum
of the elements of StzS

1 is
1

2
σ “

1

2
2t “ t,

so S contained a subset with sum equal to t.
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Problem 4. Recall that a Hamiltonian cycle of a graph G is a path that visits each
vertex of G exactly once and ends where it starts. The decision problem for this question
is

HAM´CY CLE “ txGy | G has a Hamiltonian cycleu.

The traveling salesman problem is as follows. Given a weighted, directed graph G,
determine the minimum weight Hamiltonian cycle of G. The decision problem variant
of this has an additional parameter k P N. In this case, you must determine if there is a
Hamiltonian cycle with weight at most k. We define this language formally as

TSP “ txG, ky | G has a Hamiltonian cycle of weight at most ku.

Prove that HAM´CY CLE ďp
m TSP .

Solution 4. The key observation here is that any tour the traveling salesman problem
generates is a Hamiltonian cycle. The trick is to construct a G1 such that G1 has a light
weight tour if and only if there was a Hamiltonian cycle in the original graph. This is easy.

Let G “ pV,Eq be a directed graph (an undirected graph results in an identical
reduction). Define the weighted, directed graph G1 “ pV,E 1q, where E 1 is the set of all
edges between any pair of vertices. With this graph is the weight function ω : E 1 Ñ R
defined such that

ωpeq “

#

0 e P E

1 e R E.

We claim that the function fpxGyq “ xG1, 0y is a (polynomial time) reduction from
HAM´CY CLE to TSP .

Suppose that G has a Hamiltonian cycle. Then by construction G1 has a Hamiltonian
cycle of weight 0.

Now suppose that G1 has a Hamiltonian cycle of weight 0. Then by construction G
has a Hamiltonian cycle.

Problem 5. A 2cnf-formula is a finite conjunction (logical and) of clauses, where each
clause is a disjunction (logical or) of at most two terms. For example, we have

ϕpx1, x2, x3q “ px1 _ x2q ^ p␣x3q ^ px1 _␣x3q.

A 2cnf-formula is satisfiable if there is some assignment of the variables that makes the
formula evaluate to true.

We define the corresponding language to be

2SAT “ txϕy | ϕ is a satisfiable 2cnf formulau.

Show that 2SAT P P .

Solution 5. Let ϕ be a 2cnf-formula. We build a directed graph Gϕ “ pVϕ, Eϕq as follows.
For each variable xi, we construct vertices ti and fi corresponding to assigning true to

xi and xi respectively. For each clause a_ b, where a and b are literals corresponding to
some xi or xi and xj or xj respectively, add two edges. First, one from a to b. Second,
one from b to a. These edges mean ’if a is true, then b must be true’ and ’if b is true, then
a must be true’ respectively. Otherwise put, there is a directed edge pa, bq P Eϕ iff there
is a clause a_ b in ϕ.

We give an example construction below for

ϕpx1, x2, x3q “ px1 _ x2q ^ px2 _ x3q ^ px1 _ x3q.
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x1

x1 x2

x2

x3x3

Notice that if there is a path from a to b, then there is also a path from b to a as well
since the constructed edges mirror each other.

We now claim that ϕ is unsatisfiable if and only if there exists a path from ti to fi for
some i in Gϕ.

Suppose both that there is a satisfying assignment of ϕ and there is an i such that
there’s a path from ti to fi. This will prove both directions of our claim since we can
make these two assumptions in either order without changing the subsequent logic.

Let’s first examine the case when xi is assigned to true. Then we know that each
corresponding literal on the path from ti to fi must be assigned true, including fi. But fi
cannot assign xi to be true since xi is true.

Now assume xi is assigned false instead. Then we know that there is a path from fi
to ti since there is a path from ti to fi. But then we have the same result as when xi is
assigned true. We try to assign xi to be both false and true at once.

In either case, we arrive at a contradiction, so there cannot both be a satisfying
assignment and a path from ti to fi.

Lastly, we note that constructing Gϕ can be done in polynomial time. Verifying that
it does not contain any undesirable paths can also be done in polynomial time. As such,
2SAT P P .

Further, if desired, we can extract a satisfying assignment from Gϕ. To do so, pick an
unassigned literal a and assign it to be true. Assign true to the corresponding literals of
all other reachable vertices from the vertex corresponding to a. Repeat until all literals
are assigned.
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