Problem 1. Prove that the following language is in \(NP\).

\[PRIME = \{ \langle p \rangle \mid p \text{ is prime} \} \]

You should not use the fact that \(PRIME \in P\) to show this.

Solution 1. It occurs to me that there’s more number theory involved here than is probably fair to draw upon. This problem will be thrown out.

On a side note, you cannot nondeterministically decide the compliment of this set and invert the output. This is because when simulating a NTM, you only get to see one branch of its computation at a time. Consider the case when you have \(p = 4\). Then if you test if it’s divisible by 2 and accept, you say, yes, it’s in \(PRIME\). However, if you test if it’s divisible by 3 and reject, you still say it’s in \(PRIME\), however, there is a computational branch where, when you invert the rejection, you now accept \(p\) and say that 4 is prime, which it is not.

Problem 2. The \textit{partition} problem is as follows. Given a finite set of natural numbers \(S\), determine if there is a \(S' \subseteq S\) such that the sum of the elements of \(S'\) is equal to the sum of the elements in \(S \setminus S'\).

Prove that the following language is in \(NP\).

\[PARTITION = \{ \langle S \rangle \mid S \text{ has a partition} \} \]

Solution 2. It suffices to give a polynomial time verifier \(V\) for \(PARTITION\).

\[V = \text{“On input} \langle \langle S \rangle, c \rangle, \text{“} \]

1. Check that \(c = S' \subseteq S\) and reject if not
2. Let \(a\) be the sum of the elements of \(S'\)
3. Let \(b\) be the sum of the elements of \(S \setminus S'\)
4. If \(a \neq b\), reject
5. Accept

Problem 3. Recall that the \textit{subset sum} problem is as follows. Given a finite set of natural numbers \(S\) and a natural number \(t\), determine if there is a \(S' \subseteq S\) such that the sum of the elements of \(S'\) is \(t\). The subset-sum language is then

\[SUBSET-SUM = \{ \langle S, t \rangle \mid S \text{ has a subset whose elements sum to } t \} \]

Prove that \(PARTITION \leq^m_p SUBSET-SUM\) and \(SUBSET-SUM \leq^m_p PARTITION\).
Solution 3. Before we begin, a note. Notice that on this homework, we used a variant of subset sum and partition which deals with finite sets of natural numbers instead of multisets of integers. This makes things somewhat more complicated for the second reduction. Regardless, we proceed.

The first (polynomial time) reduction $\textsc{Partition} \leq_p \textsc{Subset} \text{-} \textsc{Sum}$ is trivial. Given a set of natural numbers S, define
\[T = \sum_{a \in S} a. \]

Then we define $t(n)$ to be $\frac{n}{2}$ if n is even and $n + 1$ if n is odd. We claim that the function $f((S)) = (S, t(T))$ is a reduction from $\textsc{Partition}$ to $\textsc{Subset} \text{-} \textsc{Sum}$.

First, assume we have a partition of S into S_1 and $S \setminus S_1$. Then it follows that T is even, so $t(T)$ is exactly half the sum of the elements of S, which is the sum of the elements of S_1. Thus S has a subset sum equal to $t(T)$.

Now assume that S has a subset sum equal to $t(T)$. Then T must be even, since when T is odd, no subset of S can possibly sum to $t(T) = T + 1$. Then there is a subset sum equal to half the total sum of the elements of S, which results in a partition of S.

We now give the (polynomial time) reduction in the opposite direction. This is we prove $\textsc{Subset} \text{-} \textsc{Sum} \leq_p \textsc{Partition}$. Given a set of natural numbers S and a natural number t, define
\[T = \sum_{a \in S} a. \]

Without loss of generality, suppose that $|T - 2t| \notin S$ (we can always add a huge number to S that guarantees this difference is not in the set without affecting the result or the reduction runtime). Define the set
\[S_t = S \cup \{|T - 2t|\}. \]

Notice that the sum of all the elements of S_t, which we will call σ, is equal to $T + |T - 2t|$. When $2t \leq T$, we have $\sigma = 2(T - t)$, whereas when $2t > T$, we have $\sigma = 2t$. We claim that the function $f((S, t)) = (S_t)$ is a reduction from $\textsc{Subset} \text{-} \textsc{Sum}$ to $\textsc{Partition}$.

Assume that there is a subset S' of S with sum equal to t. Then when $2t \leq T$, adding $|T - 2t|$ to S' produces a partition of S_t, since the sum of the elements of this new set has value $T - t$, which is exactly $\frac{1}{2}\sigma$. When $2t > T$, $\sigma = 2t$, so S' is already a partition of S_t.

Now assume that there is a partition S' of S_t. Then either S' or $S_t \setminus S'$ must contain $|T - 2t|$. Without loss of generality, assume it is the former. Then when $2t \leq T$, if we remove $|T - 2t|$ from S', the sum of the elements of S' is
\[\frac{1}{2}\sigma = \frac{1}{2}(2(T - t) - (T - 2t)) = T - t - T + 2t = t, \]
so S contained a subset with sum equal to t. On the other hand, when $2t > T$, the sum of the elements of $S_t \setminus S'$ is
\[\frac{1}{2}\sigma = \frac{1}{2}2t = t, \]
so S contained a subset with sum equal to t. \square
Problem 4. Recall that a *Hamiltonian cycle* of a graph \(G \) is a path that visits each vertex of \(G \) exactly once and ends where it starts. The decision problem for this question is

\[
HAM-CYCLE = \{ \langle G \rangle \mid G \text{ has a Hamiltonian cycle} \}.
\]

The *traveling salesman* problem is as follows. Given a weighted, directed graph \(G \), determine the minimum weight Hamiltonian cycle of \(G \). The decision problem variant of this has an additional parameter \(k \in \mathbb{N} \). In this case, you must determine if there is a Hamiltonian cycle with weight at most \(k \). We define this language formally as

\[
TSP = \{ \langle G, k \rangle \mid G \text{ has a Hamiltonian cycle of weight at most } k \}.
\]

Prove that \(HAM-CYCLE \leq^p_m TSP \).

Solution 4. The key observation here is that any tour the traveling salesman problem generates is a Hamiltonian cycle. The trick is to construct a \(G'_1 \) such that \(G'_1 \) has a light weight tour if and only if there was a Hamiltonian cycle in the original graph. This is easy.

Let \(G = (V, E) \) be a directed graph (an undirected graph results in an identical reduction). Define the weighted, directed graph \(G'_1 = (V, E'_1) \), where \(E'_1 \) is the set of all edges between any pair of vertices. With this graph is the weight function \(\omega : E'_1 \to \mathbb{R} \) defined such that

\[
\omega(e) = \begin{cases}
0 & e \in E \\
1 & e \notin E.
\end{cases}
\]

We claim that the function \(f(\langle G \rangle) = \langle G', 0 \rangle \) is a (polynomial time) reduction from \(HAM-CYCLE \) to \(TSP \).

Suppose that \(G \) has a Hamiltonian cycle. Then by construction \(G'_1 \) has a Hamiltonian cycle of weight 0.

Now suppose that \(G'_1 \) has a Hamiltonian cycle of weight 0. Then by construction \(G \) has a Hamiltonian cycle. \(\square \)

Problem 5. A 2cnf-formula is a finite conjunction (logical and) of clauses, where each clause is a disjunction (logical or) of at most two terms. For example, we have

\[
\phi(x_1, x_2, x_3) = (x_1 \lor x_2) \land (\neg x_3) \land (x_1 \lor \neg x_3).
\]

A 2cnf-formula is *satisfiable* if there is some assignment of the variables that makes the formula evaluate to true.

We define the corresponding language to be

\[
2SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 2cnf formula} \}.
\]

Show that \(2SAT \in P \).

Solution 5. Let \(\phi \) be a 2cnf-formula. We build a directed graph \(G_\phi = (V_\phi, E_\phi) \) as follows.

For each variable \(x_i \), we construct vertices \(t_i \) and \(f_i \) corresponding to assigning true to \(x_i \) and \(\overline{x_i} \) respectively. For each clause \(a \lor b \), where \(a \) and \(b \) are literals corresponding to some \(x_i \) or \(\overline{x_j} \) and \(x_j \) or \(\overline{x_j} \) respectively, add two edges. First, one from \(\overline{a} \) to \(b \). Second, one from \(\overline{b} \) to \(a \). These edges mean 'if \(a \) is true, then \(b \) must be true' and 'if \(b \) is true, then \(a \) must be true' respectively. Otherwise put, there is a directed edge \((a, b) \in E_\phi \) iff there is a clause \(\overline{a} \lor b \) in \(\phi \).

We give an example construction below for

\[
\phi(x_1, x_2, x_3) = (x_1 \lor \overline{x_2}) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_3}).
\]
Notice that if there is a path from a to b, then there is also a path from \overline{b} to \overline{a} as well since the constructed edges mirror each other.

We now claim that ϕ is unsatisfiable if and only if there exists a path from t_i to f_i for some i in G_ϕ.

Suppose both that there is a satisfying assignment of ϕ and there is an i such that there’s a path from t_i to f_i. This will prove both directions of our claim since we can make these two assumptions in either order without changing the subsequent logic.

Let’s first examine the case when x_i is assigned to true. Then we know that each corresponding literal on the path from t_i to f_i must be assigned true, including f_i. But f_i cannot assign x_i to be true since x_i is true.

Now assume x_i is assigned false instead. Then we know that there is a path from f_i to t_i since there is a path from t_i to f_i. But then we have the same result as when x_i is assigned true. We try to assign x_i to be both false and true at once.

In either case, we arrive at a contradiction, so there cannot both be a satisfying assignment and a path from t_i to f_i.

Lastly, we note that constructing G_ϕ can be done in polynomial time. Verifying that it does not contain any undesirable paths can also be done in polynomial time. As such, $2SAT \in P$.

Further, if desired, we can extract a satisfying assignment from G_ϕ. To do so, pick an unassigned literal a and assign it to be true. Assign true to the corresponding literals of all other reachable vertices from the vertex corresponding to a. Repeat until all literals are assigned.