Problem 1. Explain in your own words which strings an NFA accepts.

Solution 1. An NFA accepts a string ω if an accepting state can be reached from the initial state via transitions according to ω with any number of ϵ transitions woven in.

Alternatively, an NFA accepts ω if $\delta^*(q_0, \omega) \cap F \neq \emptyset$, where q_0 is the initial state, F is the set of accepting states, and δ^* is the iterated transition function defined in problem 5.

Problem 2. Let’s try some old problems again. They can be done more straightforwardly with the power of nondeterminism. Give an NFA for each of the following languages.

1. For $\Sigma = \{a, b\}$, $\{xabbay \mid x, y \in \Sigma^*\}$.

2. For $\Sigma = \{0, 1\}$, $\{0\omega1 \mid \omega \in \Sigma^*\}$.

Solution 2.

1.

![Diagram 1](image1)

2.

![Diagram 2](image2)
Problem 3. Give an NFA for the following language.
\[\{ xy \mid x, y \in \mathbb{Z}_5^+ \text{ are individually increasing} \} \]

Here we mean a string \(\omega \in \mathbb{Z}_5^+ \) is a number with its symbols increasing further into the string. For example, 134, 24, and 4 are increasing, while 41 and 11 are not.

Hint: This problem can be done with only 12 states.

Solution 3.

Problem 4. Nondeterminism makes everything easier! Let \(\Sigma = \mathbb{Z}_2 \) be an alphabet. Define the languages \(A \) and \(B \) such that
\[
A = \{ \omega \in \Sigma^* \mid \text{ the number of 1's in } \omega \text{ is divisible by 3} \}
\]
and
\[
B = \{ \omega \in \Sigma^* \mid \omega \text{ is divisible by 3} \}
\]

Give an NFA \(N \) such that \(L(N) = \)

1. \(A \)
2. \(B \)
3. \(A \cup B \)

Solution 4.

1.
Problem 5. Give a definition of the iterated transition function for NFAs. Be sure to typecheck your inputs and outputs, and don’t forget to account for all ε transitions.
Solution 5. We will abuse notation. If we have a state $q \in Q$, we will treat it as either
the state q or as the singleton set $\{q\}$ containing q.

Define the function $E : \mathcal{P}(Q) \rightarrow \mathcal{P}(Q)$ which takes a set of states and returns all
states reachable from them via any number of ϵ transitions (including none). We can
now define the iterated transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$. For $\omega \in \Sigma^*$, $a \in \Sigma$, and
$q \in Q$, we have

$$\delta^*(q, \epsilon) = E(q)$$

$$\delta^*(q, \omega a) = \bigcup_{q_0 \in \delta^*(q, \omega)} E(\delta(q_0, a)).$$