Problem 1. Explain in your own words which strings an NFA accepts.

Problem 2. Let’s try some old problems again. They can be done more straightforwardly with the power of nondeterminism. Give an NFA for each of the following languages.

1. For $\Sigma = \{a, b\}$, $\{xabbay \mid x, y \in \Sigma^*\}$.
2. For $\Sigma = \{0, 1\}$, $\{0\omega 1 \mid \omega \in \Sigma^*\}$.

Problem 3. Give an NFA for the following language.

$$\{xy \mid x, y \in \mathbb{Z}_5^+ \text{ are individually increasing}\}$$

Here we mean a string $\omega \in \mathbb{Z}_5^+$ is a number with its symbols increasing further into the string. For example, 134, 24, and 4 are increasing, while 41 and 11 are not.

Hint: This problem can be done with only 12 states.

Problem 4. Nondeterminism makes everything easier! Let $\Sigma = \mathbb{Z}_2$ be an alphabet. Define the languages $A$ and $B$ such that

$$A = \{\omega \in \Sigma^* \mid \text{the number of 1’s in } \omega \text{ is divisible by 3}\}$$

and

$$B = \{\omega \in \Sigma^* \mid \omega \text{ is divisible by 3}\}$$

Give an NFA $N$ such that $L(N) =$

1. $A$
2. $B$
3. $A \cup B$

Problem 5. Give a definition of the iterated transition function for NFAs. Be sure to typecheck your inputs and outputs, and don’t forget to account for all $\epsilon$ transitions.