Recall that a class of languages \(\mathcal{C} \) (i.e. a set of languages) is \textit{closed} under a unary operation \(u \) if for every \(L \in \mathcal{C}, u(L) \in \mathcal{C} \). A similar definition follows for binary operations \(b \). A class \(\mathcal{C} \) of languages is closed under \(b \) if for every \(A, B \in \mathcal{C}, b(A, B) \in \mathcal{C} \). In general, a class of languages is closed under an operation if performing that operation on any languages in the class returns a language in the class.

We proved in class that the regular languages (those recognized by a DFA or NFA) are closed under union, concatenation, and Kleene star. We did this by constructing a new NFA that recognizes the language resulting from the operation and then showing that it recognizes the right language. In this lab, we’ll do the same for a few more operations.

Problem 1. Prove that the regular languages are closed under complement. Hint: There is a quick and elegant way to do this.

Solution 1. Let \(A \) be a regular language. Since \(A \) is regular, there is a DFA
\[
D = (Q, \Sigma, \delta, q_0, F)
\]
with \(L(D) = A \). We will create a new DFA \(D' \) which accepts the language \(A \). As such, define
\[
D' = (Q, \Sigma, \delta, q_0, \overline{F}).
\]
We claim that \(L(D') = \overline{A} \). To prove this, we use double containment as usual.

We will first show that \(L(D') \subseteq \overline{A} \). To do so, we will prove the contrapositive of \(\omega \in L(D') \implies \omega \in \overline{A} \). Assume that \(\omega \notin \overline{A} \), hence \(\omega \in A \). Then it follows that \(D \) accepts \(\omega \), thus \(\delta^*(q_0, \omega) \in F \). But then \(\delta^*(q_0, \omega) \notin \overline{F} \), so \(D' \) does not accept \(\omega \). Thus \(\omega \notin L(D') \).

It remains to show that \(\overline{A} \subseteq L(D') \). We will again use contraposition to prove that \(\omega \in \overline{A} \implies \omega \in L(D') \) holds. Assume that \(\omega \notin L(D') \). Then it must be the case that \(\delta^*(q_0, \omega) \notin \overline{F} \), thus \(\delta(q_0, \omega) \in F \). But this means that \(D \) accepts \(\omega \), so \(\omega \in A \). Therefore \(\omega \notin \overline{A} \). \(\square \)

There is a more elegant proof that \(L(D') = \overline{A} \) for the careful eye. Since \(L(D) = A \), we have that
\[
\omega \in A \iff \delta^*(q_0, \omega) \in F.
\]
This if and only if statement is, via contraposition, equivalent to
\[
\omega \notin A \iff \delta^*(q_0, \omega) \notin \overline{F},
\]
which of course can be rewritten as
\[
\omega \in \overline{A} \iff \delta^*(q_0, \omega) \in \overline{F}.
\]
This last statement means precisely \(L(D') = \overline{A} \). \(\square \)
Problem 2. Prove that the regular languages are closed under intersection. Hint: This one is a line proof.

Solution 2. Since the regular languages are closed under complement and union, we have for regular languages A and B that

$$A \cap B = \overline{A \cup \overline{B}},$$

hence the regular languages are closed under intersection. □

Problem 3. For a string ω, which we index by $\omega = \omega_1\omega_2\ldots\omega_{n-1}\omega_n$ for $n = |\omega|$ (zero indexing is also common), we define its reverse ω^R by

$$\omega^R = \omega_n\omega_{n-1}\ldots\omega_2\omega_1.$$

Given a language A, we define its reverse A^R by

$$A^R = \{\omega^R \mid \omega \in A\}.$$

Prove that the regular languages are closed under the reverse operation.

Solution 3. Let A be a regular language. Then there is a DFA

$$D = (Q, \Sigma, \delta, q_0, F)$$

such that $L(D) = A$. (Note that we could pick an NFA instead with the proof proceeding similarly) Intuitively, we want to define a new NFA which reverses the transitions, starts at all accepting states, and accepts if it ends in the initial state.

To accomplish this, first define $\delta' : Q \times \Sigma \to \mathcal{P}(Q)$ which, given a state q and an input a, produces the set of all states which can reach q via an a transition. In other words, we have

$$\delta'(q, a) = \{ p \in Q \mid \delta(p, a) = q \}.$$

Now define the set of states $Q_R = Q \cup \{q_s, q_t\}$. This will allow us to define the transition function $\delta_R : Q_R \times \Sigma \to \mathcal{P}(Q_R)$ for $q \in Q_R$ and $a \in \Sigma$ to be

$$\delta_R(q, a) = \begin{cases}
\delta'(q, a) & q \in Q \land a \neq \epsilon \\
q_t & q \in Q \land a = \epsilon \\
q_s & q = q_s \land a \neq \epsilon \\
F & q = q_s \land a = \epsilon
\end{cases}.$$

First notice that δ_R is defined for all inputs. This will allow us to use it as a transition function. We will now define the NFA

$$N = (Q_R, \Sigma, \delta_R, q_s, \{q_0\}).$$

We claim that $L(N) = A^R$. To show this, we will prove

$$\delta^*(q_0, \omega) \in F \iff q_0 \in \delta_R^*(q_s, \omega^R).$$

This gives us that D accepts ω if and only if N accepts ω^R. In other words, $L(D) = A$ if and only if $L(N) = A^R$.

2
To get started, assume that \(\delta^*(q_0, \omega) \in F \). By construction, we know \(\delta^*_R(q_s, \epsilon) = F \).

Observe that, again by construction, that there exists a \(p \in F \) such that \(\delta^*(q_0, \omega_1 \ldots \omega_{n-1}) \in \delta'(p, \omega_n) \). But this means that \(\delta^*(q_0, \omega_1 \ldots \omega_{n-1}) \in \delta^*_R(q_s, \omega_n) \). For the sake of clarity, we will omit the formal structural induction proof that shows this holds continuously as we shrink \(\omega \) in \(\delta \) back to \(\epsilon \). We instead merely observe that repeatedly applying the construction achieves this result, hence \(q_0 \in \delta^*_R(q_s, \omega^R) \).

The reverse implication follows similarly. Instead of contracting \(\delta \)'s input back to \(\epsilon \), we instead contract \(\delta_R \)'s input back to \(\epsilon \). This yields the result \(\delta^*(q_0, \omega) \in F \) if \(q_0 \in \delta^*_R(q_s, \omega^R) \). \(\square \)