Recall that a class of languages \mathcal{C} (i.e. a set of languages) is \textit{closed} under a unary operation u if for every $L \in \mathcal{C}$, $u(L) \in \mathcal{C}$. A similar definition follows for binary operations b. A class \mathcal{C} of languages is closed under b if for every $A, B \in \mathcal{C}$, $b(A, B) \in \mathcal{C}$. In general, a class of languages is closed under an operation if performing that operation on any languages in the class returns a language in the class.

We proved in class that the regular languages (those recognized by a DFA or NFA) are closed under union, concatenation, and Kleene star. We did this by constructing a new NFA that recognizes the language resulting from the operation and then showing that it recognizes the right language. In this lab, we’ll do the same for a few more operations.

Problem 1. Prove that the regular languages are closed under complement. Hint: There is a quick and elegant way to do this.

Problem 2. Prove that the regular languages are closed under intersection. Hint: This one is a line proof.

Problem 3. For a string ω, which we index by $\omega = \omega_1\omega_2\ldots\omega_{n-1}\omega_n$ for some $n \in \mathbb{N}$ (zero indexing is also common), we define its \textit{reverse} ω^R by

$$\omega^R = \omega_n\omega_{n-1}\ldots\omega_2\omega_1.$$

Given a language A, we define its \textit{reverse} A^R by

$$A^R = \{\omega^R \mid \omega \in A\}.$$

Prove that the regular languages are closed under the reverse operation.