Problem 1. For each of the following languages (with alphabet \(\{0, 1\} \)), give a regular expression for it. For the more complicated languages, it may help to collapse a GNFA for the language to a single transition.

1. Any string ending in 110.

2. Any string which can be broken into a (non-overlapping) sequence of the following strings: 000, 111, 101, or 010.

3. Any string of even length starting with 0 or any string of odd length starting with 1.

4. Any string not containing the substrings 11 or 000.

5. Any string except 101010.

Problem 2. Let \(A \) be language of all even length strings of \(\{0, 1\}^* \). Note that \(A \) is regular.

a) If \(A \circ A^R \) is regular, prove it.

b) If \(\hat{A} = \{\omega\omega^R \mid \omega \in A\} \) is regular, prove it.

c) Give a brief intuitive explanation in your own words of why one is regular while the other is not.

Problem 3. We characterized a regular expression \(R \) over an alphabet \(\Sigma \) as matching one of the following (sometimes recursive) conditions:

1. \(R = a \) for some \(a \in \Sigma \)

2. \(R = \epsilon \)

3. \(R = \emptyset \)

4. \(R = R_1 | R_2 \), where \(R_1 \) and \(R_2 \) are both regular expressions

5. \(R = R_1 \circ R_2 \), where \(R_1 \) and \(R_2 \) are both regular expressions

6. \(R = R_1^* \), where \(R_1 \) is a regular expression.

Other expressions can be characterized in a similar manner. One major example is the arithmetic expressions. For example, if \(E \) is an arithmetic expression, we would expect \((E) \) to also be an arithmetic expression but not \((E \circ E) \).

Define the alphabet \(\Sigma = \mathbb{Z}_{10} \cup \{+, -, \times, /, (,)\} \) (\(- \) here may be binary or unary).
a) Give a characterization similar to the characterization of regular expressions above for the arithmetic expressions.

b) Explain why the arithmetic expressions are not regular.

Problem 4. Given the DFA below, prove that the states q_0 and q_1 are distinguishable.

![DFA Diagram](attachment:dfa.png)

Problem 5. Recall that an *equivalence relation* is a binary relation between a set and itself that is reflexive, symmetric, and transitive. An *equivalence class* is a set of objects in a relation that are all equal to each other. Lastly, a family of subsets of a set S partitions S if their union is S and they are pairwise disjoint.

Suppose the DFA D below is given by the 5-tuple $(Q, \Sigma = \{1\}, \delta, q_0, F)$.

![DFA Diagram](attachment:dfa.png)

Prove the following.

1. The sets $Q_1 = \{q_0, q_3\}$ and $Q_2 = \{q_1, q_3\}$ partition Q.

2. Indistinguishably, written $q =_D p$ if states $q, p \in Q$ are indistinguishable, is an equivalence relation.

3. The sets Q_1 and Q_2 are the equivalence classes of $=_D$ (you need only give a persuasive argument here, as a full proof is tedious beyond belief).