Problem 1. Give a Turing machine which decides the language

\[L = \{ 0^n 1^n \mid n \geq 0 \} \].

You should both draw it and provide an algorithmic description of it.

Solution 1.

\(M = \) On input \(\omega \),

1. If the symbol at the head is not a 0, goto step 7
2. Otherwise, replace 0 with \(\square \)
3. Scan right until \(\square \)
4. Move left one to replace a 1 with \(\square \) and reject otherwise
5. Scan left until encountering a \(\square \)
6. Move right one and goto step 1
7. Reject if there is any input remaining
8. Otherwise, accept

```
q_0 \rightarrow \square \rightarrow R
0 \rightarrow \square, R
\square \rightarrow R
q_{reset}
1 \rightarrow \square, L
0 \rightarrow \square \rightarrow L
```

```
q_1 \leadsto \square \rightarrow L
0|1 \rightarrow R
q_2
1 \rightarrow R
q_{accept}
\square \rightarrow R
0|1 \rightarrow L
q_{reject}
```

```
Problem 2. Turning machines can also be used to compute functions! Give a Turing machine that adds one to a binary integer $\omega \in \{0, 1\}^*$. You should both draw it an provide an algorithmic description of it.

You may assume that the least significant bit of $\omega$ is at the leftmost cell of the tape. You should accept when finished or reject if the input is invalid.

Solution 2.

$M = \text{On input } \omega,$

1. If $\omega = \epsilon$, reject
2. Scan right, replacing 1’s with 0’s
3. When a 0 or a $\square$ is encountered, place a 1 and accept

\[
\begin{array}{c}
q_0 \\
1 \rightarrow 0, R \\
\square \rightarrow R \\
q_{\text{reject}} \\
q_1 \\
0\square \rightarrow 1, R \\
0 \rightarrow 1, R \\
q_{\text{accept}}
\end{array}
\]

Problem 3. Determine what language the Turing machine given below accepts.
Solution 3. This Turing machine recognizes the set of all palindromes.