Rice's Theorem is a general statement about the decidability of a language. Informally, if a language asks a nontrivial question about languages, then $L \notin \text{DEC}$. Let's formalize this.

A property of languages (or an I/O property) is a set $P \subseteq \mathcal{P}(\Sigma^*)$.

Define the set

$$L_p = \{ <M> \mid L(M) \in P \}.$$

A property P is trivial if $L_p = \emptyset$ or L_p is the set of all TMs. P is nontrivial if L_p contains at least one TM but not all of them (i.e., not trivial).

A property P is a property of the TM's language if for all TMs M_1 and M_2 for which $L(M_1) = L(M_2)$, $<M_1> \in L_p$ iff $<M_2> \in L_p$.

Ex.
- $P = \emptyset$ is trivial
- $P = \{\Sigma^*\}$ is trivial
- $P = \text{RE}$ is trivial (L_p contains all TMs)
- \overline{P} where P is trivial is trivial
- $P = \{L \mid \exists \text{TM } M \text{ with } L(M) = L \text{ and } M \text{ has an even } \# \text{ of states} \}$ is not a property of the TM's language

Obs. Any trivial property P has $L_p \in \text{DEC}$.

Why?
You either always accept or always reject.

Obs. All properties P are properties of the TM's language.

Thm. (Rice's Theorem) For any nontrivial property P, $L_p \notin \text{DEC}$.

We give a reduction from \(A_{TM} \) to \(L_\Phi \).
Assume \(\text{w.l.o.g.} \) that \(\emptyset \not\in \Phi \) (we get the same result from \(\Phi \) if so),
Since \(\emptyset \) is nontrivial, \(\exists L \in \Phi \) and \(\exists \langle N \rangle \in L_\Phi : L(N) = L \).

Now consider the TM \(D_{m,w} \).

\[D_{m,w} = \text{"On input } \langle M, w \rangle \text{,} \]
 1) Run \(M(w) \).
 2) If \(M(w) \) does not accept, reject
 3) Run \(N(w) \) and accept if it does
 4) Reject.

Clearly, \(L(D_{m,w}) = \{ \langle M(w) \rangle \mid M(w) \) accepts \} \cup \{ \emptyset \mid M(w) \) does not accept \}.

This yields \(\langle D_{m,w} \rangle \in L_\Phi \) iff \(M(w) \) accepts. (\(\emptyset \not\in \Phi \), \(\Phi \) is a property of the TM's language).

Now assume \(L_\Phi \in \text{EDEC} \). Then there is a decider \(R \) with \(L(R) = L_\Phi \).

Consider the TM \(D \).

\[D = \text{"On input } \langle M, w \rangle \text{,} \]
 1) Run \(R(\langle D_{m,w} \rangle) \).
 2) Accept if \(R(\langle D_{m,w} \rangle) \) accepts and reject otherwise.

Clearly, \(L(D) = \{ \langle M, w \rangle \mid M(w) \) accepts \} = A_{TM} \), so \(D \) decides \(A_{TM} \).

\(\therefore \) \(L_\Phi \) is not decidable.

\[\square \]

Ex) \(ALL_{TM} = \{ \langle M \rangle \mid L(M) = \Sigma^* \} \) is not decidable.

Not all TMs accept \(\Sigma^* \), so this is a nontrivial property.
Moreover, if \(L(M_1) = L(M_2) \) for TM \(M_1, M_2 \), then \(\langle M_1, M_2 \rangle \in ALL_{TM} \)
iff \(L(M_1) = L(M_2) = \Sigma^* \), hence this is a property of the TM's language.
By Rice's Theorem, \(ALL_{TM} \) is undecidable.
Given a predicate $\phi : \Sigma^* \rightarrow \{0, 1\}$, we can determine if the language

$$L = \{ w \mid \phi(w) \}$$

has a nontrivial I/O property (which is a property of languages). If $\phi(w)$ for any w for which w is not the encoding of a TM, then L is not an I/O property.

We can now rewrite L as

$$L = \{ \langle M \rangle \mid \phi(K_M) \}$$

for convenience. Then if ϕ satisfies for all M_1, M_2

$$L(M_1) = L(M_2) \Rightarrow \phi(\langle M_1 \rangle) = \phi(\langle M_2 \rangle),$$

then ϕ represents an I/O property.

To show that ϕ is nontrivial, it suffices to show that there is some M_1 and M_2 such that $\phi(\langle M_1 \rangle)$ and $\neg \phi(\langle M_2 \rangle)$.

In other words, there is a TM that satisfies ϕ and another TM which does not.

With this, we can rewrite Rice's Theorem as follows.

Theorem (Rice's Theorem): Let P be a language consisting of TM encodings, suppose P satisfies the following properties.

i) $\exists M_1, M_2$ such that $\langle M_1 \rangle \in P$ and $\langle M_2 \rangle \notin P$.

ii) $\forall M_1, M_2$, $L(M_1) = L(M_2) \Rightarrow \langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$.

Then P is undecidable.