Problem 1. Define the language

\[FACTOR = \{\langle n, k \rangle \mid n \text{ has a factor (other than 1) less than } k \}\].

Show that \(FACTOR \in NP \).

Problem 2. The \textit{partition problem} is as follows. Given a finite set of (rational) numbers \(S \), determine if there is an \(S' \subseteq S \) such that the sum of the elements of \(S' \) is equal to the sum of the elements not in \(S' \).

We restrict \(S \) to the rationals here since real numbers have a more involved notion of computability that we will not delve into. We could further restrict \(S \) to the integers or even the natural numbers, but those languages induce more pedantic reductions.

Prove that the following language is in \(NP \).

\[PARTITION = \{\langle S \rangle \mid S \text{ has a partition} \}\]

Problem 3. Recall that the \textit{subset-sum problem} is as follows. Given a finite set of (rational) numbers \(S \) and a (rational) number \(t \), determine if there is an \(S' \subseteq S \) such that the sum of the elements of \(S' \) is equal to \(t \). The subset-sum language then is

\[SUBSET−SUM = \{\langle S, t \rangle \mid S \text{ has a subset whose elements sum to } t \}\].

Prove that \(PARTITION \leq^p_m SUBSET−SUM \).

Problem 4. Prove that \(SUBSET−SUM \leq^p_m PARTITION \).

Problem 5. Recall that a \textit{Hamiltonian cycle} of a digraph \(G \) is a cycle that visits each vertex exactly once. The decision problem for this is encoded as

\[HAM−CYCLE = \{\langle G \rangle \mid G \text{ has a Hamiltonian cycle} \}\].

The \textit{traveling salesman} problem is as follows. Given a weighted, \textbf{complete} digraph \(G \), determine its minimum weight Hamiltonian cycle. The decision problem variant of this has an additional parameter \(k \in \mathbb{N} \). In this case, it asks if there is a Hamiltonian cycle of weight at most \(k \). We formally define this language as

\[TSP = \{G \mid G \text{ has a Hamiltonian cycle of weight at most } k \}\].

Prove that \(HAM−CYCLE \leq^p_m TSP \).