Problem 1. Define the language
\[ \text{LOOP}_{TM} = \{ \langle M, \omega \rangle \mid M \text{ is a Turing machine that on input } \omega \text{ loops forever} \}. \]
Show that \( \text{LOOP}_{TM} \in \text{co–RE} \).

Solution 1. We show that \( \text{LOOP}_{TM} \in \text{co–RE} \) by giving a Turing machine \( N \) for its compliment.

\( N = \) On input \( \langle M, \omega \rangle \)
1. Run \( M(\omega) \)
2. Accept

Clearly, \( N \) accepts inputs \( \langle M, \omega \rangle \) such that \( M(\omega) \) halts. If \( M \) doesn’t halt on \( \omega \), then we neither accept nor reject, so that pair isn’t part of \( N \)'s language. Thus \( L(N) = \overline{\text{LOOP}_{TM}} \).

Note that we omitted what happens to input strings which are not encodings of Turing machines paired with a string for the sake of clarity. In this problem, we would accept them because they belong to the complement set. Of course, it’s possible that the encoding is a bijective function, in which case there are no invalid encodings.

Problem 2. Prove that \( \text{LOOP}_{TM} \notin \text{DEC} \) by reducing an undecidable language \( L \) to it (i.e. show that \( L \leq_T \text{LOOP}_{TM} \)).

Solution 2. We’ll pick the halting language \( \text{HALT}_{TM} \) for \( L \).

Suppose that \( \text{LOOP}_{TM} \in \text{DEC} \). Then there is a decider \( D \) for it. We construct a new Turing machine \( N \) for \( \text{HALT}_{TM} \) using \( D \).

\( N = \) On input \( \langle M, \omega \rangle \)
1. Run \( D(\langle M, \omega \rangle) \)
2. If \( D \) accepts, reject
3. Accept

Clearly, \( N \) accepts exactly all inputs which \( D \) rejects, meaning they do not loop forever. This in turn means that they halt. Thus \( L(N) = \text{HALT}_{TM} \). But \( N \) always halts since \( D \) is a decider, so it must also be a decider. Hence \( \text{HALT}_{TM} \in \text{DEC} \). This is, of course, nonsense, so no such \( D \) exists. Therefore \( \text{LOOP}_{TM} \notin \text{DEC} \).

Problem 3. Prove that \( \text{LOOP}_{TM} \notin \text{RE} \).
Solution 3. Since $\text{LOOP}_{TM} \notin \text{DEC}$ but $\text{LOOP}_{TM} \in \text{co-RE}$, it follows that $\text{LOOP}_{TM} \notin \text{RE}$. 

Problem 4. For each of the following languages, determine if Rice’s Theorem applies. Explain why or why not. You may assume that $\Sigma = \{0, 1\}$.

- $A = \{\omega \in \Sigma^* | |\omega| \text{ is even}\}$
- $B = \{\langle M, \omega \rangle | M(\omega) \text{ accepts}\}$
- $C = \{\langle M, \omega \rangle | \omega \in L(M)\}$
- $D = \text{LOOP}_{TM}$
- $E = \{\langle M \rangle | 001 \in L(M)\}$
- $F = \{\langle M \rangle | M \text{ takes at most 5 steps to finish on any input}\}$
- $G = E \cap F$

Solution 4.

- Rice’s Theorem doesn’t apply to $A$ since it only applies to languages which are composed of strings that are Turing machine encodings.
- Rice’s Theorem doesn’t apply to $B$ since it only applies to languages which are composed of strings that are Turing machine encodings.
- Rice’s Theorem doesn’t apply to $C$ since it only applies to languages which are composed of strings that are Turing machine encodings.
- Rice’s Theorem doesn’t apply to $D$ since it only applies to languages which are composed of strings that are Turing machine encodings.
- Rice’s Theorem applies to $E$ since it is a nontrivial property of the Turing machine’s language. It is easy to see that the property is nontrivial since there are Turing machines which don’t accept 001 and some that do. Moreover, any two Turing machines with the same language obviously belong to $E$ together or are not in $E$ together since they both either accept 001 or both don’t.
- Rice’s Theorem doesn’t apply to $F$ since we can easily generate a Turing machine which rejects in 1 step on all inputs and another Turing machine which rejects in 6 steps on all inputs. Since these two Turing machines have the same language ($\emptyset$) while one belongs to $F$ and the other does not, it follows that $F$ is not a property of the Turing machine’s language.
- Rice’s Theorem doesn’t apply to $G$ since it doesn’t apply to $F$. 

2