Problem 1. For each of the following statements, determine if it is true or false. No explanation is necessary.
 a) $42n^2 + 5n - 50^{777} \in O(n^2)$
 b) $n \in O(\sqrt{n^2})$
 c) If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$
 d) There is no nonconstant function f such that $f \in O(1)$
 e) If f is a function, then $TIME(f) \subseteq NTIME(f)$
 f) $NP \subseteq RE$
 g) If f is a function, then $TIME(f) \subseteq co-RE$
 h) $HAM-PATH \leq_m A_{TM}$
 i) $HAM-PATH \leq^p_m A_{TM}$
 j) $A_{TM} \leq_m HAM-PATH$

Problem 2. Let $G = (V, E)$ be a graph. A k-coloring of G is an assignment of one of k distinct colors to each vertex $v \in V$ such that no two adjacent vertices, those connected by an edge $e \in E$, have the same color. The decision problem formulation of this is the language
 $$kC = \{\langle G, k \rangle \mid G \text{ has a } k\text{-coloring}\}.$$

Prove that $kC \in NP$.

Problem 3. As with $kSAT$, when $k \geq 3$, kC is a hard problem. Similarly, when $k < 3$, kC is easy to compute.

Give a polynomial time algorithm that decides $2C$.

Problem 4. Let S be a family of sets, and let U be the union of each set in S. A k-hitting set is a $U' \subseteq U$ satisfying $|U'| = k$ and for each $S' \in S$ there is a $u \in U'$ such that $u \in S'$. The decision problem formulation of this is the language
 $$HS = \{\langle S, k \rangle \mid S \text{ has a } k\text{-hitting set}\}.$$

Prove that $HS \in NP-COMPLETE$.
Problem 5. Let

$$DOUBLE-SAT = \{ \langle \phi \rangle \mid \phi \text{ is a Boolean formula with at least two satisfying assignments} \}.$$

Prove that $$DOUBLE-SAT \in NP-COMPLETE$$.

Problem 6. There is a distinction to be made between decision problems, those that accept/reject strings for languages, and function problems, which compute a function. For instance, $$SAT$$ is a decision problem that determines if a given Boolean formula is satisfiable. It does not, however, produce an assignment which satisfies it. The analogous class to $$P \ (NP)$$ is $$FP \ (FNP)$$, which is the set of function problems that can be solved by a deterministic (nondeterministic) Turing machine in polynomial time.

Show that if $$P = NP$$, then there is a polynomial time (deterministic) algorithm which produces a satisfying assignment when given a Boolean formula.

(Hint: there exists a deterministic polynomial time algorithm which decides $$SAT$$ which you can query any polynomial number of times.)

Problem 7. Prove that if $$P = NP$$, then every nontrivial (not $$\emptyset$$ or $$\Sigma^*$$) language in $$P$$ is in $$NP-COMPLETE$$.

Problem 8. Prove that $$P \subseteq NP \cap co-NP$$.

Problem 9. Give a language $$L$$ that is not in $$NP$$ and prove that $$L \notin NP$$.

Problem 10. Recall that for a language $$L$$ to be complete for a language class $$C$$, then every language in $$C$$ must mapping reduce to $$L$$ (possibly subject to some resource bound) and $$L$$ must be in $$C$$. For $$P$$ and $$NP$$, the resource bound is polynomial time. This is also the case for $$co-NP$$. A language $$L$$ is in $$co-NP-COMPLETE$$ if $$L \in co-NP$$ and every language in $$co-NP$$ mapping reduces to $$L$$ in polynomial time.

Prove that if $$NP \neq co-NP$$, then no $$NP-COMPLETE$$ language can be in $$co-NP$$ nor can any $$co-NP-COMPLETE$$ language be in $$NP$$.

2