Problem 1. For each of the following statements, if it is expressed in English, translate it into mathematical notation. If it is expressed in mathematical notation, instead rewrite it in pure English terms. For example, the statements “There exists a positive integer which is the sum of two squares” and “∃x ∈ ℤ : x > 0 ∧ ∃a, b ∈ ℤ : x = a^2 + b^2” are equivalent.

a) The sum of any two even natural numbers is even.

b) The symmetric difference of two sets is equal to the union of the intersections of each set with the complement of the other set.

c) The roots of any quadratic polynomial with positive coefficients must be nonpositive.

d) The arithmetic mean of any set of nonnegative reals is greater than or equal to their geometric mean. (Hint: given n numbers, the arithmetic mean is the average of their sum, while the geometric mean is the nth root of their product)

e) Every even natural number is prime.

f) ∀r ∈ ℚ∃n ∈ ℤ : rn ∈ ℤ

g) ∃!x ∈ ℜ : 2x + 3 = 0

h) ∃c > 0 ∃N > 0 : n ≥ N ⊃ 100n ≤ n^2

i) ∃cake ∈ {true, false} : ¬cake

j) ∀f : ℤ → ℤ ∃n ∈ ℤ : f(n) = n

Solution 1.

a) ∀n, m ∈ ℤ, 2 | n ∨ 2 | m ⊃ 2 | n + m

b) A△B = (A ∩ B^c) ∪ (A^c ∩ B)

c) ∀a, b, c ∈ ℜ: ∀x ∈ ℜ, ax^2 + bx + c = 0 ⊃ x ≤ 0

d) ∀n ∈ ℤ ∀a_1, ..., a_n ∈ ℜ ≥ 0, 1/n \sum_{i=1}^{n} a_i ≥ \sqrt[n]{a_1 \cdots a_n}

e) ∀n ∈ ℤ, 2 | n ⊃ (∀m ∈ ℤ, 2 ≤ m < n ⊃ m ∤ n)

f) For every rational, there is a natural number such that their product is an integer.

g) There exists a unique real number such that twice it plus three is zero.
h) There is a positive constant c and a positive constant N such that every number n at least N satisfies 100 times n is at most n squared.

i) The cake is a lie.

j) For every function from naturals to naturals, there is another natural that is a fixed point of that function.

Problem 2. Four friends have been identified as suspects for an unauthorized access into a computer system. They have made statements to the investigating authorities. Alice said ”Carlos did it.” John said ”I did not do it.” Carlos said ”Diana did it.” Diana said ”Carlos lied when he said that I did it.”

1. If the authorities also know that exactly one of the four suspects is telling the truth, who did it? Explain your reasoning.

2. If the authorities also know that exactly one is lying, who did it? Explain your reasoning.

Solution 2.

1. If the authorities know that exactly one of four suspects is telling the truth, we have the following cases (note that if exactly one suspect is telling the truth, the other suspects must be lying):

 John
 If John is telling the truth, then Diana must be lying. Diana’s statement asserts that Carlos is lying, so if she is lying, then Carlos must be telling the truth. However, since John is telling the truth, Carlos cannot also be telling the truth by assumption. Therefore, we have a contradiction.

 Alice
 If Alice is telling the truth, then Carlos did it. But if Carlos did it, then John did not, and hence is telling the truth. We thus again arrive at a contradiction.

 Carlos
 If Carlos is telling the truth, then Diana did it. As before, this means that John is telling the truth, which leads us to the same contradiction.

 Diana
 If Diana is telling the truth, then Carlos lied, and Diana did not do it. Alice is also lying, so Carlos did not do it. Lastly, John is lying, so he must have done it. As we have not reach a contradiction in this case and only this case, we conclude that John is the culprit.

2. If the authorities know that exactly one of four suspects is lying, we have the following cases (note that if exactly one suspect is lying, the other suspects must be telling the truth):

 John
 If John is lying, then he did it. However, this means that Diana did not do it, so Carlos must also be lying. Therefore, we have a contradiction.
Alice

If Alice is lying, then Carlos must be telling the truth. However, Diana’s statement asserts that Carlos is lying, so Diana must also be lying. We thus again arrive at a contradiction.

Diana

If Diana is lying, then Carlos must be telling the truth, so Diana did it. But then Carlos cannot have done it, so Alice must also be lying. Again, a contradiction.

Carlos

Lastly, if Carlos is lying, then Diana is telling the truth and she did not do it. John is also telling the truth and did not do it. Then Alice is telling the truth, so Carlos did it. As we have not reach a contradiction in this case and only this case, we conclude that Carlos is the culprit.

Problem 3. Let A and B be sets. Prove

$$A \cup B \subseteq A \cap B \text{ iff } A = B.$$

Solution 3. Let A and B be given.

First, assume that $A = B$. Then it follows that $A \cup B = A = A \cap B$, hence $A \cup B \subseteq A \cap B$ since $A \subseteq A$.

Now assume that $A \cup B \subseteq A \cap B$. To show that $A = B$, we will show that $A \subseteq B$ and $B \subseteq A$.

To prove $A \subseteq B$, assume that $x \in A$. Since $x \in A$, it must be the case that $x \in A \cup B$. But $A \cup B \subseteq A \cap B$, so $x \in A \cap B$. But if $x \in A \cap B$, it must be the case that $x \in B$. Thus $A \subseteq B$.

A similarly argument follows to show that $B \subseteq A$.

\[\square\]