Like Prim’s algorithm, Kruskal’s algorithm finds MSTs. The only difference between them is in their greedy choice. Prim’s starts from a single vertex and continually picks the lightest weight edge from the set of processed vertices to a vertex outside the set.

In contrast, Kruskal’s starts with each vertex as a connected component and repeatedly selects the lightest weight edge between two unconnected components.

Ex]
Kruskals \((G = (V, E), \omega)\)

Let \(T = (V, \emptyset)\)

Let \(P\) be a priority queue ordered by increasing edge weight

Put \(E\) into \(P\)

Let \(k = 0\) \((k = |V|)\)

While \(k < |V|-1\) \((\text{breaks when } T \text{ is a ST})\)

Poll edge \((u,v)\) from \(P\)

If \(\text{Find}(u) \neq \text{Find}(v)\)

Add \((u,v)\) to \(T\)

Union \((u,v)\)

\(k++\)

Return \(T\)

The runtime of this is certainly \(\Omega(|E| \log |E|) = \Omega(|E| \log |V|)\) in the WC since stuffing all of \(E\) into \(P\) means we may need to remove every edge from \(P\) to build \(T\) \((\text{this is a heap sort})\).

The upper bound on the WC runtime depends on how efficient \text{Find} and \text{Union} are. This is where the disjoint set data structure comes in.

The Problem: We want to know if \(u\) is connected to \(v\) (in the same component)

The idea: Each component has a representative vertex, so \(u\) and \(v\) are connected if they have the same representative.

\text{Initialize} \((V)\)

For each \(u \in V\)

\(u.\text{rep} = u\)

\text{Find} \((u)\)

If \(u.\text{rep} = u\)

Return \(u\)

Return \(\text{Find}(u.\text{rep})\)

Improvement!

Return \(u.\text{rep} = \text{Find}(u.\text{rep})\)

\text{Union} \((u,v)\)

\(u.\text{rep} = v\)

Improvement!

\text{Union} \((u,v)\)

\(\text{Find}(u).\text{rep} = \text{Find}(u)\)

If \(u, v\) are in the same component, this new operation is redundant.
The worst-case runtime of Union-Find is $O(n)$ when we call find at the bottom of a linked list, but this is uninteresting. Union-Find is inherently called many times, so we want to look at the amortized time. The best implementation of Union-Find leaves both algorithms with amortized time $O(\alpha(n))$.

What is $\alpha(n)$? $\alpha(n) = A^1(n,n)$.

Okay, but what is $A(n,n)$? It's the Ackermann function (α is the inverse Ackermann function).

$$A(m,n) = \begin{cases} n+1 & m = 0 \\ A(m-1,1) & n = 0, m > 0 \\ A(m-1,A(m,n-1)) & n, m > 0 \end{cases}$$

Which is...

$$A(m,n) = \begin{cases} n+1 & m = 0 \\ 2^{m-2}(n+3) - 3 & m > 0 \end{cases}$$

What is that ↑? Knuth's up-arrow notation.
\[2 \uparrow 4 = 2 \times (2 \times (2 \times (2))) = 2^4 = 16 \]
\[2 \uparrow \uparrow 4 = 2 \uparrow (2 \uparrow (2 \uparrow (2))) = 2 \uparrow (2 \uparrow 2) = 2 \uparrow (2^2) = 2^{2^2} = 2^4 = 65536 \]
\[2 \uparrow \uparrow \uparrow 4 = 2 \uparrow \uparrow (2 \uparrow \uparrow (2 \uparrow \uparrow (2))) = \ldots = 2^{2^{^{^{\ldots}}}} = \text{very, very, big} \]
\[
\]
So \(A(n,n) \) gets huge really fast, so \(\alpha(n) \) grows at a crawl. \(\alpha(n) \) is less than 5 for any reasonable \(n \), where \(n \) is almost the number of atoms in the universe.

Proving that this is the runtime is beyond the scope of this course, but it is interesting to checkout.

Regardless, Union-Find is thus effectively constant time, so Kruskal's runs in \(O(E \log V) \).