Recall the Quick Select algorithm. We will prove it is correct. To do so, we must first prove Partition is correct. To do that, we will need what we call a **loop invariant** to prove that its loop terminates with the state we need.

A loop invariant is some statement which, if it's true at the beginning of an iteration must also be true at the end of an iteration.

Ex.

\[\text{sum} = 0 \]

For \(i = 1\) to \(n\)

\[\text{sum} + i \]

We define \(i\) to be 0 outside the loop and to increment at the beginning of the loop. It often helps to write pseudocode explicitly state what's going on.

A LI here would be \(\text{sum} = \frac{i(i+1)}{2}\).

To prove a LI is correct, we prove 3 things.

Initialization (The LI must be true before the loop)

\[\text{sum} = 0 = \frac{0(0+1)}{2} = \frac{0(0+1)}{2} \]

Maintenance (LI \(\Rightarrow\) LI')

\[i' = i+1 \]

\[\text{sum}' = \text{sum} + i' \]

So \(\text{sum}' = \text{sum} + i' = \frac{i(i+1)}{2} + i' = \frac{(i'-1)i'}{2} + \frac{2i'}{2} \]

Termination (Prove the loop ends and that the algorithm is correct)

Since \(i\) is increasing by 1 each iteration, the loop ends when \(i = n\). Then \(\text{sum} = \frac{n(n+1)}{2}\), which is presumably what we wanted.
We can now prove Partition is correct.

First, let’s write down what Partition is supposed to do.

For an array A with $0 \leq l \leq r < |A|$, Partition(A, l, r, p):

- Returns an index $l \leq i \leq r$ such that $A'[i] = A[p]$.
- Leave $A'[i] = A[i]$ for $0 \leq i \leq l$ and $r < i \leq |A|$
- Satisfies $A'[i] \leq A'[I]$ for $l \leq i \leq I$
- Satisfies $A'[i] > A'[I]$ for $I < i \leq r$
- Satisfies for $l \leq i \leq r$ there is $l \leq j \leq r$ such that $A'[j] = A[j]$. (Assume each entry unique for convenience)

Less formally, Partition rearranges A from l to r such that everything to the left of wherever $A[p]$ ends up is smaller and everything to the right is bigger. It then returns the new index of $A[p]$.

We’ll now need 3 LIs. Often it’s easiest to write them down from outermost to innermost.

\[\text{LIO}(A, l, r, p, l, r, p) : \forall i, l \leq i \leq l, A[i] \leq p\]
\[\forall i, r < i < r, A[i] > p\]
\[A[r] = p\]

\[\text{LII1}(A, l, r, p, l, r, p) : \text{LIO}(A, l, r, p, l, r, p)\]
\[\text{LII2}(A, l, r, p, l, r, p) : \text{LIO}(A, l, r, p, l, r, p)\]

\[\text{LIO Init}\]
This is vacuously true except for the third point, which is explicitly true.

\[\text{LIO Maintainence}\]
Assume $\text{LIO}(A, l, r, p, l, r, p)$.

\[\text{LII1 Init}\]
True by assumption.

\[\text{LII1 Maintainence}\]
Assume $\text{LII1}(A, l, r, p, l, r, p)$.
If the loop terminates, we’re done.
Otherwise, $l < r$ and $A[l] \leq p$.
\[l' = l+1\]
Since $A[l] \leq p$ and nothing else has changed, $\text{LII1}(A, l', r, p, l, r, p)$.
LII1 Termination

Since l is incremented by 1 each iteration and $R \leq \infty$, the loop must terminate eventually. When it does, either $l' = R$ or $A[l'] > P$.

LII2 Init

True by assumption because LII1(A, l', r, l, l, R, P) is true.

LII2 Maintenance

Assume LII2$(A, l', r, p, l, l, R, P)$.
If the loop terminates, we’re done.
Otherwise $r > l$ and $A[r] > P$.

$r' = r - 1$

LII2 Termination

Since r is decremented by 1 each iteration and $l > -\infty$, the loop must terminate eventually. When it does, either $r' = l$ or $A[r'] \leq P$.

Lastly swap $A[l']$ and $A[r']$ if $l' < l$, which has no bearing on LIO$(A, l', r', p, l, l, R, P)$. However, we note that in this case $r' > l$ and $l' \leq R$, which results in $A[l'] \leq P$ and $A[r'] > P$.
Otherwise since LII2$(A, l', r', p, l, l, R, P)$, LIO$(A, l', r', p, l, l, R, P)$ as A' has otherwise not changed.
When instead $l' \geq r'$, we don’t change A at all, so LII2$(A, l', r', p, l, l, R, P)$ gives us LIO$(A, l', r', p, l, l, R, P)$.

LIO Termination

Unless $l' \geq r'$, in which case the loop terminates, each iteration necessarily swaps two elements of A so that $A'[l'] \leq P$ and $A'[r'] > P$. This will cause $r' - l'$ to decrease by at least 2 each iteration. This difference must go to 0, at which point $l' \geq r'$ and the loop terminates.
When the loop terminates, we have \(L(0, l', r', p, l, r, p) \).

Since \(l' \geq r' \) we know that when we swap \(A'[l'] \) and \(A'[R] \),
\(A''[R] > p \). Therefore, we have

\[\begin{align*}
A''[i] &= A[i] & \text{for } 0 \leq i \leq l \text{ and } l \leq i \leq |A| \\
A''[i] &= A'[i'] & \text{for } l < i \leq l' \\
A''[i] &= A''[l] & \text{for } l < i \leq r \\
\text{For each } i, l \leq i \leq r, \text{ there is a } l < j < r \text{ such that } A''[i] = A[j] \\
\text{Lastly, Partition returns } l', \text{ and } A''[l'] = A[p].
\end{align*} \]

We now prove \text{QuickSelect} correct through induction.

\text{QuickSelect} \((A, l, r, K)\) should:

- For an array \(A \) with \(0 \leq l \leq K \leq r \leq |A| \)
- and the \(l^{th} \) to \(r^{th} \) smallest elements of \(A \) within the range \(l \) to \(r \);
 - Return the \(k^{th} \) smallest element of \(A \).

\begin{enumerate}
\item \text{When } l = r, \text{ it must be the case that } l = k \text{ and }
\item \text{BC: } A[l] \text{ contains the } k^{th} \text{ smallest element of } A. \text{ As we return this QuickSelect is correct.}
\item \text{IS: } \text{Now assume that QuickSelect} \((A, l, r, K)\) \text{ is correct for any } l \text{ and } r \text{ subject to } r - l \leq n.
\end{enumerate}

\text{Let } l \text{ and } r \text{ be such that } r - l = n + 1.

We know \(l \neq r \) since \(r - l > 0 \).

\text{Let } p \text{ be whatever pivot index we choose between } l \text{ and } r.

\text{Partition} \((A, l, r, p)\) \text{ sets } A \text{ to } A' \text{ and } p \to p' \text{ such that everything in } A'[l..r] \text{ smaller than } A[p] \text{ is to its left in the subarray. Similarly, everything larger than } A[p] \text{ in } A'[l..r] \text{ is to its right in the subarray.
Since \(A[l..r] \) contains the \(q \)th to \(r \)th smallest elements of \(A \), it then follows that \(A'[p'] \) is the \(p' \)th smallest element of \(A' \).

If \(k=p' \), we return \(A'[p'] \) correctly.

If \(k \neq p' \), we return \(\text{QuickSelect}(A', l', p'-1, k) \).

As \(k \leq p' \), we have \(0 \leq l \leq k \leq p'-1 \leq l' \). Moreover,
\[A'[l..p'-1] \] must contain the \(k \)th to \((p'-1) \)th smallest elements of \(A' \) since partition put the elements of \(A[l..r] \) smaller than \(A[p] \) into \(A'[l..p'-1] \) left of \(A'[p'] \).

Lastly, since \((p'-1) - l \leq r - l = n+1 \), it follows that
\(\text{QuickSelect}(A', l', p'-1, k) \) returns the \(k \)th smallest element of \(A' \), which is also the \(k \)th smallest element of \(A \) and we return correctly immediately.

Finally, in the \(k > p' \) case, a similar train of logic follows.

\[\square \]