Problem 1. In your own words, give a definition of computation.

Problem 2. Give a regular expression for each of the following languages. You may assume that $\Sigma = \mathbb{Z}_2$.

a) The language where every third symbol is a 1

b) The language where the length of every string is divisible by three or five.

Problem 3. Give a right-regular grammar for the following languages. You may assume that $\Sigma = \mathbb{Z}_2$.

a) The language of binary encodings of natural numbers with no leading 0’s (e.g. include 4 = 100 but not 4 = 0100)

b) The language where the third to last symbol in every string is 1 (exclude strings of length less than three)

Problem 4. Give a short description of the language of each of the following right-regular grammars. For each grammar, S is the start symbol and $\Sigma = \mathbb{Z}_2$.

a) $S \to 0A \quad A \to 0B \quad B \to 0A \mid \epsilon$

b) $S \to A_{00} \quad A_{00} \to \epsilon \mid 0A_{10} \mid 1A_{01} \quad A_{10} \to 0A_{00} \mid 1A_{11} \quad A_{01} \to 0A_{11} \mid 1A_{00} \quad A_{11} \to 0A_{01} \mid 1A_{10}$

Problem 5. Define the reverse operator on a string $\omega = \omega_1 \ldots \omega_n$ to be $\omega^R = \omega_n \ldots \omega_1$. On a language L, we can define

$$L^R = \{ \omega^R \mid \omega \in L \}.$$

Prove that if L is regular, then L^R is regular.