Problem 1. Prove using a finite automaton definition of regularity that if a language L is regular if, then its complement \overline{L} is regular.

Problem 2. Prove using the Myhill-Nerode Theorem that if a language L is regular, then \overline{L} is regular.

Problem 3. Prove or disprove using the Pumping Lemma or the Myhill-Nerode Theorem that the following language is regular.

$$A = \{0^p \mid p \text{ is prime}\}$$

Problem 4. Prove or disprove using the Pumping Lemma or the Myhill-Nerode Theorem that the following language is regular.

$$B = \{0^i1^j \mid i > j \geq 0\}$$

Problem 5. Prove or disprove using the Pumping Lemma or the Myhill-Nerode Theorem that the following language is regular.

$$C = \{\omega \in \Sigma^* \mid |\omega| \equiv 0 \mod 777\}$$

You may assume that $\Sigma = \{0, 1\}$.