Problem 1. Explain what it means for \(f \) to be in \(O(g) \) in your own words.

Solution 1. For all but finitely many \(n \), \(f(n) \) is bounded above by \(g(n) \) times some positive constant.

Problem 2. Order the below functions so that if \(f \) appears before \(g \), then \(f \in O(g) \).

\[
\begin{array}{cccccccc}
 n! & n \log n & \log n! & \log^* n & n^n & \log_3 n & n^3 & 0 \\
 \log 2n & n^2 & \log n & 1 & 2^n & 3^n & n & n^\frac{3}{2}
\end{array}
\]

Unless otherwise specified, you may assume that \(\log = \log_2 \). Also, \(\log^* n \) is the iterated logarithm. It is the number of times you must take the logarithm to get a number between 0 and 1. For example,

\[
\begin{align*}
 \log^* 1 &= 0 & \log^* 2 &= 1 & \log^* 4 &= 2 & \log^* 16 &= 3 & \log^* 65536 &= 4 & \log^* 2^{65536} &= 5
\end{align*}
\]

Solution 2.

\[
\begin{array}{cccccccc}
 0 & 1 & \log^* n & \log n = \log 2n = \log_3 n & n & n \log n & \log n! & n^n
\end{array}
\]

Problem 3. Prove that \(3n^2 + 2n - 77 \in O(n^2) \).

Solution 3. When \(n \geq 1 \), we have

\[
\begin{align*}
3n^2 + 2n - 77 &\leq 3n^2 + 2n^2 - 77 \\
&\leq 3n^2 + 2n^2 \\
&= 5n^2
\end{align*}
\]

Since the only restriction we needed to place on \(n \) was \(n \geq 1 \) to bound \(n \) above by \(n^2 \), we can pick \(c = 5 \) and \(N = 1 \).

Problem 4. Prove that if \(f_1 \in O(g) \) and \(f_2 \in O(g) \), then \(f_1 + f_2 \in O(g) \).

Solution 4. Since \(f_1 \in O(g) \), it follows that there is a \(c_1 > 0 \) and an \(N_1 > 0 \) such that when \(n \geq N_1 \), \(f_1(n) \leq c_1 g(n) \). Since \(f_2 \in O(g) \), it follows that there is a \(c_2 > 0 \) and an \(N_2 > 0 \) such that when \(n \geq N_2 \), \(f_2(n) \leq c_2 g(n) \).

If we pick \(N = \max(N_1, N_2) \), then when \(n \geq N \), both of the inequalities above hold. Then we have

\[
\begin{align*}
f_1(n) + f_2(n) &\leq c_1 g(n) + c_2 g(n) \\
&= (c_1 + c_2) g(n)
\end{align*}
\]

To conclude the proof, pick \(c = c_1 + c_2 > 0 \).