Problem 1. Explain what it means for \(f \) to be in \(O(g) \) in your own words.

Problem 2. Order the below functions so that if \(f \) appears before \(g \), then \(f \in O(g) \).

\[
\begin{array}{c}
n! \\
\log n \\
\log n! \\
\log^* n \\
n^3 \\
0 \\
\log 2n \\
n^2 \\
\log n \\
1 \\
2^n \\
3^n \\
n \\
n^{1/2}
\end{array}
\]

Unless otherwise specified, you may assume that \(\log = \log_2 \). Also, \(\log^* n \) is the \textit{iterated logarithm}. It is the number of times you must take the logarithm to get a number between 0 and 1. For example,

\[
\begin{align*}
\log^* 1 &= 0 \\
\log^* 2 &= 1 \\
\log^* 4 &= 2 \\
\log^* 16 &= 3 \\
\log^* 65536 &= 4 \\
\log^* 2^{65536} &= 5
\end{align*}
\]

Problem 3. Prove that \(3n^2 + 2n - 77 \in O(n^2) \).

Problem 4. Prove that if \(f_1 \in O(g) \) and \(f_2 \in O(g) \), then \(f_1 + f_2 \in O(g) \).