Problem 1. Give a right-regular grammar that whose language is empty.

Solution 1. While there are many possible grammars we could give, including the grammar with no production rules, we give a grammar that can never terminate and thus derives no terminal strings.

\[S \rightarrow S \]

Problem 2. Give a right-regular grammar that whose language is the empty string.

Solution 2.

\[S \rightarrow \epsilon \]

Problem 3. Give a right-regular grammar that whose language is the single string 0.

Solution 3.

\[S \rightarrow 0 \]

Problem 4. Give a right-regular grammar that whose language is the single string 1001.

Solution 4.

\[S \rightarrow 1A \quad B \rightarrow 0C \\
A \rightarrow 0B \quad C \rightarrow 1D \]

Problem 5. Give a right-regular grammar that whose language is the concatenation of the following two grammars’ with alphabets \(Z_4 \) and start symbols \(S_1 \) and \(S_2 \).

\[
\begin{array}{|c|c|}
\hline
S_1 & 0S_1 \mid A_1 \\
A_1 & 1A_1 \mid \epsilon \\
\hline
\end{array} \\
\begin{array}{|c|c|}
\hline
S_2 & 2S_2 \mid A_2 \\
A_2 & 3A_2 \mid \epsilon \\
\hline
\end{array}
\]

Solution 5. We need only combine the two grammars and change the production \(A_1 \rightarrow \epsilon \) to \(A_1 \rightarrow S_2 \). The start symbol will be \(S_1 \).

\[
\begin{array}{|c|c|}
\hline
S_1 & 0S_1 \mid A_1 \\
A_1 & 1A_1 \mid S_2 \\
\hline
\end{array} \\
\begin{array}{|c|c|}
\hline
S_2 & 2S_2 \mid A_2 \\
A_2 & 3A_2 \mid \epsilon \\
\hline
\end{array}
\]

Problem 6. Give a right-regular grammar that whose language is the union of the following two grammars’ with alphabets \(Z_2 \) and start symbols \(S_1 \) and \(S_2 \).

\[
\begin{array}{|c|c|}
\hline
S_1 & 1S_1 \mid A_1 \\
A_1 & 0A_1 \mid \epsilon \\
\hline
\end{array} \\
\begin{array}{|c|c|}
\hline
S_2 & 0S_2 \mid A_2 \\
A_2 & 1A_2 \mid \epsilon \\
\hline
\end{array}
\]
Solution 6. We will add a new start symbol S that diverts production to either grammar, who otherwise do not interact.

\[
\begin{align*}
S & \rightarrow S_1 && S \rightarrow S_2 \\
S_1 & \rightarrow 1S_1 | A_1 && S_2 \rightarrow 0S_2 | A_2 \\
A_1 & \rightarrow 0A_1 | \epsilon && A_2 \rightarrow 1A_2 | \epsilon
\end{align*}
\]

Problem 7. Give a right-regular grammar that whose language is the star of the following grammar’s with alphabet \mathbb{Z}_2 and start symbol S.

\[
S \rightarrow 1A \quad A \rightarrow 0B \quad B \rightarrow 0 \mid 1
\]

Solution 7. Rather than add two new production rules for B to loop, we will instead add a loop state L which allows production to either loop or terminate.

\[
S \rightarrow 1A \quad A \rightarrow 0B \quad B \rightarrow 0L \mid 1L \quad L \rightarrow S \mid \epsilon
\]

Problem 8. Give a right-regular grammar whose language is any binary string satisfying ‘every 1 is immediately followed by two 0’s’.

Solution 8. With a start symbol S, we can either produce as many 0's as we wish or we can produce a 1 and then must produce two 0's before production can finish.

\[
S \rightarrow \epsilon \mid 0S \mid 1A \quad A \rightarrow 0B \quad B \rightarrow 0S
\]