So far we've concerned ourselves with reachability only, caring not for the details of how we get from s to t. We now want to think about the shortest path from s to t.

Ex)

```plaintext
Explore neighbors alphabetically

**DFS Path**

$S A B C T$

**BFS Path**

$S D t$

**Shortest Path**

$S D t$
```

Is it coincidence that BFS found the shortest path?

No! BFS explores all vertices 1 edge from s, then all vertices 2 edges from s, etc. The shortest path here is the first $S \rightarrow t$ path BFS finds because BFS explores path in edge-distance order. What about with a general nonnegative weighting?

Ex)

```plaintext
Explore neighbors alphabetically

**DFS Path**

$S A B C T$

Distance = 21

**BFS Path**

$S D t$

Distance = 1001

**Shortest Path**

$S A B D t$

Distance = 14
```
One way to find the shortest path (on a nonnegative weighting) is to continually find the shortest path from \(s \) to a new vertex.

Example

![Graph](image)

\[
\begin{array}{c|c|c|c|c}
\text{Vertex} & \text{Distance from } s & \text{Previous} & \text{Distance from } s & \text{Previous} \\
\hline
S & 0 & \varnothing & 1 & A \\
A & 3 & S & 4 & B \\
B & 1 & C & 7 & F \\
C & 2 & D & 8 & E \\
D & 5 & E & 10 & F \\
E & 1 & F & 2 & \varnothing \\
F & 1 & \varnothing & 2 & \varnothing \\
\end{array}
\]

Dijkstra's Algorithm

Algorithm

Let \(D: V \to \mathbb{R}_{\geq 0} \times V \) be a map (use an array/dictionary/hash map for \(\text{dist, prev} \)).

Assign \(D(s) = (0, \varnothing) \)

Let \(Q \) be a priority queue.

For each \(u \in V \)

- If \(u \neq s \)
 - Assign \(D(u) = (\infty, \varnothing) \)
 - Enqueue \(u \) in \(Q \) with priority \(\infty \)

While \(Q \) is not empty

- Dequeue \(u \) from \(Q \) with priority \(p \)

For each neighbor \(v \) of \(u \)

- If \(D(v) \geq D(u) + \omega(u,v) \)
 - Assign \(D(v) = (D(u) + \omega(u,v), u) \)
 - Decrease the priority of \(v \) in \(Q \) to \(D(u) + \omega(u,v) \)

Return \(D \)
The runtime of Dijkstra's depends heavily on how you implement both it and your priority queue. The best known implementation uses a Fibonacci heap to achieve $O(E + V \log V)$, which is the fastest general path-finding algorithm for nonnegative weighted digraphs. Other algorithms are faster for special cases. For example, when all weights are equal, use BFS.

Example

Now let's prove Dijkstra is correct.

Proof

With input $G = (V, E)$, $s \in V$, $w : E \to \mathbb{R}_{\geq 0}$,

Dijkstra(G, s, w) returns a mapping

$D : V \to \mathbb{R}_{\geq 0} \times V$ such that $D(u)$ is

the length of a shortest path from s to u and $D(u)$ is

the previous vertex on a shortest path from s to u (which one

is not unique doesn't matter b/c either path backwards to s is shortest).

We will need two loop invariants to do this.

$\text{LI}_0(D, Q, U) = \forall g \in U, D(g) = (l, h)$, where l is the length of

a shortest path from s to g using only vertices in Q and

h is the vertex before g on a shortest path (or (∞, l) if no

such path exists).

For LI_0, $U = V$, but we add this parameter to make LI_1

easier to write.
For the inner loop invariant, we're going to define N to be the unprocessed neighbors of v for convenience.

$LII(D, Q, N) := LIO(D, Q \cup \{u\} \setminus N) \land LIO(D, Q, \bar{N})$

(we can use u as an intermediary)

Suppose $LII(D, Q, v)$.

The only thing that can possibly change is $D(v)$.

This occurs precisely when $D(v) > D(u) + W(u, v)$, hence when

* a shortest path using v vertices in $\bar{Q} \cup \{u\}$ is longer than
 a shortest path using u as an intermediary.*

In either case, we assign $D(v)$ to be the (length, predecessor) of a shortest path using intermediary vertices not in Q as desired. Then $N' = N \setminus \{u\}$.

Thus $LII(D', Q, N')$, so LII is a loop invariant of the inner loop.

* There is no shorter path with u as an intermediary but not v.

Now suppose $LIO(D, Q, v)$.

We remove u from Q with lowest priority ($D(u) \leq D(v)$, $\forall v \in Q$).

Since $Q' \cup \{u\} \subseteq \bar{Q}$, it cannot gain from being an intermediary.

Since $D(u) \leq D(v)$, $D(u)$ is correct for u. Moreover, u's only vertices that can benefit from u as an intermediary currently are those adjacent to u. By (*), there is no detour through Q that helps. As such, we know

$LII(D', Q', N(u))$ holds, where $N(u)$ are the neighbors of u.

The inner loop must break because N loses a vertex each time and $N(u)$ is finite. When it does, $N = \emptyset$, thus $LIO(D, Q', v)$.

Lastly, notice that the alg initializes D, π so that $\text{LIO}(D, \pi, V)$ holds since $\pi = V$ and the only reachable vertex from s via no intermediaries is s with $D(s) = (0, 1)$.

When the outer loop breaks (π finite and loses 1 vert each loop), π is empty, so we have $\text{LIO}(D, \emptyset, V)$. But then $\forall u \in V, D(u)$ is the length of a shortest path $s \to u$ using any vertex as an intermediary, hence it is the shortest path $s \to u$ in G. Moreover, $D(u)$ is the predecessor on one such shortest paths.

We then return D correctly.

As an aside try coming up with an algorithm for the longest path.

In general, this is an exceedingly hard problem. Unlike shortest path, (where if u lies on the shortest path from $p = s \to t$, then $p = s \to u \to t$ is also the shortest paths $s \to u$ and $u \to t$) longest path does not exhibit this optimal substructure property. There do, however, exist special cases where it does, such as in DAGs.

$\text{DAGLP}(G, w)$

Let $D : V \to \mathbb{R}_{\geq 0} \times V$ be a map with $D(v) = (\infty, 1)$ everywhere.

Let L be a topological sort of G.

For each $u \in L$ (in topological order)

For each $v \in N(u)$

If $D(v) = (D(u) + w(u, v))$

$D(v) = (D(u) + w(u, v), u)$

Return D
Since L is a topological sort, we explore every possible path forward in the graph to find the longest paths.

\[\text{TS: A B C D E} \]

\[
\begin{align*}
D(A) &= (0, A) \\
D(B) &= (2, A) \\
D(C) &= (4, A) \\
D(D) &= (5, B) \\
D(E) &= (11, C)
\end{align*}
\]

Notice that this algorithm also works to find the shortest path in a DAG if we flip the inequality since we explore every possible path forward.

Also, the distance from \(u \) to \(v \) in either case is \(D(v) - D(u) \) when \(v \) is reachable from \(u \).

Lastly, note that the runtime is \(O(V+E) \) in either case.