Every problem looks like a graph problem if you stare at it hard enough. Consider sorting an array of length \(n \). We can treat each input as an element of \(S_n \). Then we can make a graph \(G = (S_n, E) \) where \(E = \{ u \rightarrow v | u, v \in S_n \text{ and } u \neq v \} \) swap differences.

If we are asked to sort \(A \in S_n \), then we start at vertex \(A \) and attempt to find the identity permutation. The path we take represents the swaps we make, and the length of the path is the number of swaps.

Example

\(n = 3 \)

\(A = (231) \)

- Swap 1, 2
- Swap 2, 3

If we take a step back, there's a more general problem here.

Reachability

The graph problem is to determine if there is a path from \(u \) to \(v \) in a graph. There are many algorithms which do this under different constraints. Each has a different space and time complexity. Reachability is one of the few problems that require only NL space.

NL Reachability \((G, s, t) \)

Let \(u = s \)
Let \(i = 0 \)
While \(u \neq t \land i \leq |V| \)
- Pick a \(v \) such that \((u, v) \in E\)
 - Let \(u = v \)
 - \(i++ \)
Return \(i \neq |V| \)

The maximum simple path length is \(|V| - 1 \) edges.
This is a sneak preview of nondeterminism. So long as any execution path of NReachability returns true, we say there is a path \(s \rightarrow t \). If no execution path returns true, we say there is no path \(s \rightarrow t \). In essence nondeterminism checks if \(\exists p \) or if \(\forall p, \neg p \).

We can turn this into a clever deterministic algorithm.

Reachability \((G, s, t, k)\)

- If \(k = 0 \)
 - Return \(s = t \)
- If \(k = 1 \)
 - Return \((s, t) \in E\)
- For \(u \in V \)
 - If Reachability \((G, s, u, \lfloor \frac{k}{2} \rfloor) \land \text{Reachability} (G, u, t, \lceil \frac{k}{2} \rceil)\)
 - Return True
- Return False

Notice that we are only storing \(u \) and \(k \) memory at any recursive call, and the recursive depth is \(\log_2 k \), so we only need \(\log_2 k \) of them. We make \(k = |V| \) initially, b/c the maximum simple path length in \(G \) has \(|V| \) vertices. Thus we need \(\log_2 |V| \) pieces of memory of \(\log_2 |V| \) size (2 integers of value at most \(|V|\)) for \(\log^2 |V| \) total memory.

How long does this algorithm take?

\[T(n) = 2nT(\frac{n}{2}) + \Theta(n) \]

The MIT does not want \(a = 2n \) as a function of \(n \), so we need a work tree.
So Reachability is $O(n \log^2 n)$, which is very bad. But on the upside, its space complexity is $O(\log^2 n)$. However, maybe we should instead trade some extra memory usage for a vast speedup.