The scheduling problem is as follows. Given a set of tasks $S \subseteq \mathbb{R}^2$, where each task (s, t) has a start time s and end time t, what is the maximum number of tasks you can do? (Tasks must not overlap)

How do we determine what tasks to perform?

- Shortest Duration

- Next Available

- Least Conflicts

- DP

$$R(s) = 1 + \max_{t \in S} \left(R(\{ t \in S \mid t \text{'s end before } s \text{'s start}\}) + R(\{ t \in S \mid t \text{'s start after } s \text{'s end}\}) \right)$$

- Earliest Deadline (Greedy Solution)

Thm Let $S \subseteq \mathbb{R}^2$ be a nonempty instance of the scheduling problem, and let $a = (s, t) \in S$ with $V(a') = (s', t') \in S$, $t' \leq t$. Then a is included in some maximum size nonoverlapping subset of S.
Let S, a be as stated.

Let $A \subseteq S$ be an optimal solution, and let $b = (r_s, r_f) \in A$ be such that $\forall b' = (r'_s, r'_f) \in A, \ r_s \leq r'_s$.

If $a = b$, we're done.

If $a \neq b$, then a satisfies $t_f \geq r_f$. Moreover, since no $b' \in A$ can overlap b, b' must start after b since b' finishes after b.

As such b' also starts after a. Thus $(A \setminus \{b\}) \cup \{a\}$ is also a maximum size non-overlapping subset of S, and it contains a.

\[\square\]

SP (S)

Sort the tasks in S by their finish time.

Let T be an empty set of tasks.

Let $t = -\infty$

For $i = 1$ to $|S|

\text{If } S_i.t_f \geq t

\quad \text{Add } S_i \text{ to } T

\quad t = S_i.t_f

\text{Return } T

The runtime of SP is $O(n) + \text{the runtime of whatever sort you choose to use. It is not unreasonable to require } S \text{ to be sorted ahead of time, in which case you would not bother.}