For this example, you can use your notes and the notes on the course page, but you should not.

Problem 1. Prove that $\frac{1}{2}n^3 + 2(n - 1)^2 + 42 \in O(n^4)$.

For the next three problems, consider the following.

For a matrix M of dimensions $2n$ by $2m$, we can divide it into four equally sized block matrices of size n by m. For example, when $n = m = 2$, we could have

$$M = \begin{bmatrix}
 1 & 2 & 3 & 4 \\
 5 & 6 & 7 & 8 \\
 9 & 10 & 11 & 12 \\
 13 & 14 & 15 & 16
\end{bmatrix} = \begin{bmatrix}
 M_{11} & M_{12} \\
 M_{21} & M_{22}
\end{bmatrix}.$$

To multiply two matrices AB of size 2^n by 2^n together ($n > 0$), the naive approach would result in

$$AB = \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix} \begin{bmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{bmatrix} = \begin{bmatrix}
 A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
 A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}.$$
Algorithm 1: Strassen(A,B)

Input: Two matrices A and B of size 2^n by 2^n
Output: The product $C = AB$ of size 2^n by 2^n

if $n = 0$ then
 return AB

$M_1 = \text{Strassen}(A_{11} + A_{22}, B_{11} + B_{22})$
$M_2 = \text{Strassen}(A_{21} + A_{22}, B_{11})$
$M_3 = \text{Strassen}(A_{11}, B_{12} - B_{22})$
$M_4 = \text{Strassen}(A_{22}, B_{21} - B_{11})$
$M_5 = \text{Strassen}(A_{11} + A_{12}, B_{22})$
$M_6 = \text{Strassen}(A_{21} - A_{11}, B_{11} + B_{12})$
$M_7 = \text{Strassen}(A_{12} - A_{22}, B_{21} + B_{22})$

return $\begin{bmatrix}
 M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\
 M_2 + M_4 & M_1 - M_2 + M_3 + M_6
\end{bmatrix}$

Problem 2. Prove that

$$AB = \begin{bmatrix}
 M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\
 M_2 + M_4 & M_1 - M_2 + M_3 + M_6
\end{bmatrix},$$

where each M_i is as described in the Strassen algorithm (assuming the recursive calls correctly return the product of their inputs).

Problem 3. Prove that the Strassen algorithm is correct.

Problem 4. Give a recurrence relation $T(m)$ for Strassen (where m is the width/height of the matrix) and determine the big-oh runtime of the algorithm (your bound should be as good as possible). Show your work for the latter.

Recall that the ceiling of a number r, written $\lceil r \rceil$, is the unique integer z such that $r \leq z < r + 1$. For the next two problems, consider the following algorithm.

Algorithm 2: CLog(n)

Input: $n \in \mathbb{Z}^+$
Output: $\log_2 n$
Let $\log = 0$
Let $i = 1$
while $i < n$ do
 $\log = \log + 1$
 $i = 2 \cdot i$
return \log

Problem 5. Give a (useful) loop invariant for CLog and prove that it is a loop invariant. Do not prove that CLog is correct.

Problem 6. Prove that CLog is correct.
For the next three problems, consider the following.

Arbitrage is the process of buy and selling goods to take advantage of market inefficiencies to make money. For example, if you can buy $1 for ¥148 and then buy ¥149 for $1, you can make ¥1 by buying a dollar and then selling it for yen.

Let C be a collection of $n \geq 2$ currencies, and let $w : C \times C \to \mathbb{Q}^+$ represent the exchange rates between them. In the example above,

$$w(\$, ¥) = \frac{148}{149} \quad w(¥, \$) = \frac{1}{148}.$$

Problem 7. In terms of the variables given to you above, describe when arbitrage is possible.

Problem 8. In general, multiplication is a harder problem than addition. Transform your arbitrage condition from the previous problem from being about a product into being about a sum.

Problem 9. Give a polynomial time (pseudocode) algorithm to detect when arbitrage is possible (your algorithm is given C and w). You do not need to come up with the exchange cycle, only detect its existence.

Problem 10. Let $G = (V, E)$ be a connected graph, and let T be a minimum spanning tree of G. Prove that the shortest path between any pair of vertices of V does not necessarily use only the edges in T.

For the next three problems, consider the following.

Let $G = (V, E)$ be a connected graph, and let $w : E \to \mathbb{Q}$ be the weights of its edges. The *bottleneck value* of a spanning tree $T = (V_T, E_T)$ of G, written $b(T)$, is the maximum edge weight of E_T, i.e.

$$b(T) = \max_{e \in E_T} w(e).$$

A *minimum bottleneck spanning tree* of G is a spanning tree T^B that minimizes $b(T^B)$.

In other words, let \mathcal{T} be the set of all spanning trees of G. Then T^B is a minimum bottleneck spanning tree of G if for every $T \in \mathcal{T}$,

$$b(T^B) \leq b(T).$$
Problem 11. Let $G = (V, E)$ be a connected graph, $w : E \to \mathbb{Q}$ be the weights of G’s edges, and $b \in \mathbb{Q}$. Give a polynomial time (pseudocode) algorithm that, given G, w, and b, determines if there is a bottleneck spanning tree T of G with $b(T) \leq b$.

Problem 12. Let $G = (V, E)$ be a connected graph, and let $w : E \to \mathbb{Q}$ be the weights of G’s edges. Give a polynomial time (pseudocode) algorithm that, given G and w, determines the bottleneck value of a minimum bottleneck spanning tree of G.