CSC 341 - Fall 2023
First Exam Solutions

Problem 1. Let \(a_n = 4(a_{n-1} - a_{n-2}) \) for \(n \geq 3 \). Suppose that \(a_1 = 2 \) and \(a_2 = 8 \). Prove that for all positive integers \(n \), \(a_n = n2^n \).

Solution 1. We will prove this via strong induction. For our base cases, we have \(a_1 = 2 = 1 \cdot 2 = 1 \cdot 2^1 \) and \(a_2 = 8 = 2 \cdot 4 = 2 \cdot 2^2 \).

Now assume that for all \(1 \leq k \leq n \), we have \(a_k = k2^k \). Consider the \(n + 1 \) case. We have

\[
\begin{align*}
a_{n+1} &= 4(a_n - a_{n-1}) \\
&= 4(n2^n - (n-1)2^{n-1}) \\
&= 2^{n+1}(2n - (n-1)) \\
&= (n + 1)2^{n+1}
\end{align*}
\]

Problem 2. Suppose you have a grid of \(n \) cells by \(n \) cells. You want to place coins into the grid cells so that no more than 2 coins are in any row or column. We give an example below for \(n = 4 \) with a maximal number of coins placed.

![Grid with coins]

Prove that no more than \(2n \) coins can be placed this way.

Solution 2. There are \(n \) rows. By the pigeonhole principle, if we placed more than \(2n \) coins on the grid, then at least one row must contain at least 3 coins. As such, this is not possible.
Problem 3. Give a regular expression for the language of all even length strings ending in 111. You may assume $\Sigma = \{0, 1\}$.

Solution 3. $\Sigma^*\Sigma111$

Problem 4. Give a right-regular grammar for the language of all even length strings ending in 111. You may assume $\Sigma = \{0, 1\}$.

Your grammar should not be a generalized right-regular grammar, which allows regular expressions to be produced.

Solution 4. With start symbol S, we have the following productions:

$$
S \rightarrow 0A \mid 1A \quad A \rightarrow 0S \mid 1S \mid 0B \mid 1B \quad B \rightarrow 0C \mid 1C \\
C \rightarrow 1D \quad D \rightarrow 1E \quad E \rightarrow 1
$$

Problem 5.

a) Give an NFA for the language of all even length strings ending in 111.

b) Give a DFA for the language of all even length strings ending in 111.

For both problems, you may assume $\Sigma = \{0, 1\}$.

Solution 5.

a)

```
  q0  q2  q3
 --|---|---
  ^ ^  ^
  | |  |
  | |  |
  v v  v
 q1 q2 q3
```

b)
Problem 6. Prove that if A and B are regular, then the intersection of A and B is regular.

Solution 6. We have previously proven that the regular languages are closed under complement, and it is closed under union by definition, so they must be closed under intersection as well.

Problem 7. Let Σ be an alphabet. Given a language $L \subseteq \Sigma^*$, the even part of L is the set

$$E(L) = \{ \omega \in L \mid |\omega| \text{ is even} \}.$$

Prove or disprove that if L is regular, then $E(L)$ is regular.

Solution 7. The set of all even length strings $E(\Sigma^*)$ is obviously regular. Moreover, the class of regular languages is closed under intersection, so if L is regular, then clearly

$$E(L) = E(\Sigma^*) \cap L$$

is also regular.

Below we present a more traditional proof of the closure.

Suppose L is regular. Then there is a DFA

$$D = (Q, \Sigma, \delta, q_0, F)$$

with $L(D) = L$.

Construct a new DFA

$$D_e = (Q \times \{E, O\}, \Sigma, \delta_e, (q_0, E), F_e),$$

where $F_e = \{(q, E) \mid q \in F\}$ and for $(q, P) \in Q \times \{E, O\}$ and $a \in \Sigma$, we have

$$\delta_e((q, P), a) = \begin{cases} (\delta(q, a), O) & P = E \\ (\delta(q, a), E) & P = O. \end{cases}$$
Observe that D_e behaves identically to D except that it’s state space now tracks the parity of its input’s length. So if $\delta(q, \omega) = p$, then we have $\delta_e((q, P), \omega) = (p, P')$, where P' satisfies the following.

1. If $P = E$ and $|\omega|$ is even, then $P' = E$.
2. If $P = E$ and $|\omega|$ is odd, then $P' = O$.
3. If $P = O$ and $|\omega|$ is even, then $P' = O$.
4. If $P = O$ and $|\omega|$ is odd, then $P' = E$.

We omit a formal inductive proof of this, as it is clear by inspection.

Now observe that $\delta_e((q_0, E), \omega) \in F_e$ iff $|\omega|$ is even and $\delta(q_0, \omega) \in F$. This gives us that D_e only accepts even length strings in L. Moreover, the logic reversed implies that D_e accepts all even length strings in L. Therefore $L(D_e) = E(L)$. Since we have given a DFA for $E(L)$, it follows that $E(L)$ is regular.

Problem 8. Prove or disprove the converse of Problem 7. That is if $E(L)$ is regular, then L is regular.

Solution 8. Consider the language

$$L = \{0^{n+1}1^n \mid n \geq 0\}.$$

Clearly, L is not regular. Moreover, $E(L) = \emptyset$, which is regular, so the statement is false.

Problem 9. Prove that every finite language is regular.

Solution 9. Let L be a finite language. Then we can write L as the finite union

$$\bigcup_{\omega \in L} \{\omega\}.$$

But this is a regular expression, so L must be regular.

Problem 10. Let L be a regular language. Define M_L to be the (unique) state-minimal DFA for L. Define the set

$$LOOPLESS(L) = \{\omega \in L \mid M_L \text{ does not visit any state more than once on input } \omega\}.$$

Prove that for every regular language L, $LOOPLESS(L)$ is also regular.

Solution 10. Let L be regular. Since M_L has a finite number of states, there is a finite number of paths through M_L that visits each state at most once. Each such path corresponds to a unique input string. As such, there are at most a finite number of strings in $LOOPLESS(L)$. In Problem 10, we showed that any finite language is regular, so $LOOPLESS(L)$ is regular.