Problem 1. Let $a_n = 4(a_{n-1} - a_{n-2})$ for $n \geq 3$. Suppose that $a_1 = 2$ and $a_2 = 8$. Prove that for all positive integers n, $a_n = n2^n$.

Problem 2. Suppose you have a grid of n cells by n cells. You want to place coins into the grid cells so that no more than 2 coins are in any row or column. We give an example below for $n = 4$ with a maximal number of coins placed.

![Grid Example](image)

Prove that no more than $2n$ coins can be placed this way.

Problem 3. Give a regular expression for the language of all even length strings ending in 111. You may assume $\Sigma = \{0, 1\}$.

Problem 4. Give a right-regular grammar for the language of all even length strings ending in 111. You may assume $\Sigma = \{0, 1\}$.

Your grammar should not be a generalized right-regular grammar, which allows regular expressions to be produced.

Problem 5.

a) Give an NFA for the language of all even length strings ending in 111.

b) Give a DFA for the language of all even length strings ending in 111.

For both problems, you may assume $\Sigma = \{0, 1\}$.
Problem 6. Prove that if A and B are regular, then the intersection of A and B is regular.

Problem 7. Let Σ be an alphabet. Given a language $L \subseteq \Sigma^*$, the *even part* of L is the set

$$E(L) = \{ \omega \in L \mid |\omega| \text{ is even} \}.$$

Prove or disprove that if L is regular, then $E(L)$ is regular.

Problem 8. Prove or disprove the converse of Problem 7. That is if $E(L)$ is regular, then L is regular.

Problem 9. Prove that every finite language is regular.

Problem 10. Let L be a regular language. Define M_L to be the (unique) state-minimal DFA for L. Define the set

$$\text{LOOPLESS}(L) = \{ \omega \in L \mid M_L \text{ does not visit any state more than once on input } \omega \}.$$

Prove that for every regular language L, $\text{LOOPLESS}(L)$ is also regular.