Below is an example of a graph in which Dijkstra’s Algorithm fails.

![Graph Diagram]

The shortest path from A to D is $ACBD$, which has weight -734. Dijkstra’s algorithm instead reports that the weight of the shortest path is 2.

This happens because Dijkstra’s assumes that no distance, when modified, has yet been used to find other distances. By the time ACB is explored, the path AB has already been extended to ABD. This results in the incorrect shortest distance from A to D of 2 with predecessor B even though the shortest distance from A to B is reported as -735.

We could instead follow the predecessors back to A. This will give us the shortest path $ACBD$ from D back to A. We could then calculate the shortest distance by adding the edge weights along this path. But this is not always the case!

Problem 1.

![Graph Diagram]

Give (integer) values for x and y which cause Dijkstra’s to fail to find the shortest path to F even when the shortest path is constructed via following F’s predecessors back to the start vertex A (i.e. Dijkstra’s incorrectly reports that F’s predecessor is E). In addition, give an intuitive explanation of why your choice of x and y causes this failure.

Solution 1.
Problem 2. To fix this problem, we give up our ability to know when a vertex is “done”. Instead, we seek shortest paths using a maximum number of intermediate edges.

Let \(G = (V, E) \) be a graph with edge weights \(w : E \rightarrow \mathbb{Q} \). Define \(D_{s,i}(u) \) to be the shortest distance from the start vertex \(s \) to vertex \(u \) using at most \(i \geq 0 \) intermediate edges. The trick to computing \(D_{s,i} \) is that there is always a last edge on a path, so we can obtain

\[
D_{s,i+1}(u) = \min \left(D_{s,i}(u), \min_{(v,u) \in E} (D_{s,i}(v) + w(v,u)) \right).
\]

Moreover, any path in a graph requires at most \(|V| - 1\) edges.

Explain why this recursive definition is correct (you need not prove it) by examining its cases.

Solution 2. The shortest path to \(u \) from \(s \) using at most \(i + 1 \) edges either

- uses less than \(i + 1 \) edges, in which case the shortest path is contained within \(D_{s,i} \), or
- it must have a last edge \((v, u)\) from some vertex \(v \neq u \).

In the latter case, this last edge leaves us with only \(i \) edges additional available to form our shortest path. We already have a path from \(v \) to \(u \), so we need to augment it with the shortest path from \(s \) to \(v \). Fortunately, we have this value in \(D_{s,i}(v) \)!

Problem 3. Fill in the chart of values for \(D_{A,i}(u) \) below to calculate the shortest paths in 1 (for your values of \(x \) and \(y \)). Unreachable vertices have distance \(\infty \), and the only vertex reachable from \(A \) via no intermediate edges is \(A \) itself.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(u)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution 3.
Problem 4. Propose a (psuedocode) algorithm that, on input graph $G = (V, E)$, weighting $w : E \to \mathbb{Q}$, and start vertex $s \in V$, calculates the shortest path from s to every vertex in V using the previous two problems as a guide. You do not need to keep predecessor data, though you may if you wish.

Solution 4.

Algorithm 1: Bellman-Ford($G = (V, E), s, w$

// Initialize the map D
// Only the last two rows of D are needed
// Previous rows can be reused/discarded for space
Let D be a map from $V \times \mathbb{Z}_{|V|}$ to \mathbb{Q}
Initialize $D(u, 0) = 0$ for all $u \in V$
Assign $D(s, 0) = 0$

for $i = 1$ to $|V| - 1$ do
 foreach $(u, v) \in E$ do
 if $D(v, i - 1) < D(u, i - 1) + w(u, v)$ then
 Assign $D(v, i) = D(u, i - 1) + w(u, v)$
 else
 Assign $D(v, i) = D(v, i - 1)$
 return D's last row

Problem 5. What is the worst-case runtime of your algorithm? Why?

Solution 5. The worst-case runtime is $O(VE)$ regardless of input. The outer loop executes the inner loop V times, and each inner loop takes $O(E)$ time.

Problem 6. The algorithm you gave in the previous problem (probably) has a scenario in which it fails. The shortest path is not always the shortest walk. Under what circumstances can this occur? In other words, when is there not a shortest path?

Solution 6. When there is a negative weight cycle in the graph.

Problem 7. Detecting this situation is actually quite easy. If $D_{s,|V|}(u) < D_{s,|V|-1}(u)$ for any $u \in V$, then you have an unsolvable problem (interestingly, this is also an efficient way to detect this situation). If necessary, amend your algorithm to detect this and report it/throw an error if necessary.

Solution 7.
Algorithm 2: Bellman-Ford($G = (V,E), s, w$

// Initialize the map D
// Only the last two rows of D are needed
// Previous rows can be reused/discarded for space
Let D be a map from $V \times \mathbb{Z}_{|V|}$ to \mathbb{Q}
Initialize $D(u,0) = 0$ for all $u \in V$
Assign $D(s,0) = 0$

for $i = 1$ to $|V| - 1$ do
 foreach $(u,v) \in E$ do
 if $D(v,i - 1) < D(u,i - 1) + w(u,v)$ then
 Assign $D(v,i) = D(u,i - 1) + w(u,v)$
 else
 Assign $D(v,i) = D(v,i - 1)$

foreach $(u,v) \in E$ do
 if $D(v,i - 1) < D(u,i - 1) + w(u,v)$ then

return D’s last row