Define the set of all Turing machines to be \mathcal{M}. For a property $P : \mathcal{M} \rightarrow \{\text{true}, \text{false}\}$, define the language

$$L_P = \{\langle M \rangle \mid M \in \mathcal{M} \text{ and } P(M)\}.$$

Rice’s Theorem requires two facts to hold.

1. P is nontrivial (i.e. P is not always true or always false), and

2. P is a property of the Turing machine’s language, that is for every pair of Turing machines A and B such that $L(A) = L(B)$, $P(A)$ if and only if $P(B)$ (i.e. $\langle A \rangle \in L_P$ if and only if $\langle B \rangle \in L_P$).

If both of these are true, then Rice’s Theorem tells us that $L_P \notin \text{DEC}$.

Problem 1. Prove that the following language is not decidable using Rice’s Theorem.

$$FIN = \{\langle M \rangle \mid |L(M)| < \infty\}$$

Here, $P(M) := |L(M)| < \infty$.

Recall that a language A mapping reduces to a language B, written $A \leq_m B$, if there is a computable function f such that for every $\omega \in \Sigma^*$, $\omega \in A$ if and only if $f(\omega) \in B$.

A mapping reduction transforms an input to A into an input to B. In other words, f makes B do A’s job. In general, you can think of $A \leq_m B$ as meaning “A is no harder than B” or “B is at least as hard as A”. Put plainly, if you can “solve” B, then you can “solve” A. If you can’t solve A, then solving B would solve A, so you can’t solve B either.

This results in the following useful theorems when $A \leq_m B$.

- $B \in \text{RE} \implies A \in \text{RE}$
- $A \notin \text{RE} \implies B \notin \text{RE}$
- $B \in \text{co-RE} \implies A \in \text{co-RE}$
- $A \notin \text{co-RE} \implies B \notin \text{co-RE}$
- $B \in \text{DEC} \implies A \in \text{DEC}$
- $A \notin \text{DEC} \implies B \notin \text{DEC}$
Problem 2. In the chart below, the first two rows tell you if a language is in RE or $co-RE$. Then in each cell below that, place an X if the row’s language mapping reduces to the column’s language. No proof is required.

<table>
<thead>
<tr>
<th></th>
<th>A_{TM}</th>
<th>A_{TM}</th>
<th>$HALT_{TM}$</th>
<th>E_{TM}</th>
<th>ALL_{TM}</th>
<th>EQ_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$co-RE$</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{TM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{TM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$HALT_{TM}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{TM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL_{TM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{TM}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One lesson to take away from the previous problem is that like reduces to like (observe the RE rows and the $co-RE$ rows). The other lesson is that there are problems that are simply so hard that they can solve every RE and $co-RE$ problem (observe the EQ_{TM} column).

Problem 3.

a) Give a utility Turing machine $U_{M,\omega}$ so that

$$L(U_{M,\omega}) = \begin{cases} \Sigma^* & M(\omega) \text{ halts} \\ \emptyset & M(\omega) \text{ does not halt.} \end{cases}$$

b) Show that $HALT_{TM} \leq_m FIN$.

c) Prove that $FIN \notin RE$.

Problem 4. Prove that if $A \in RE$ and $A \leq_M \overline{A}$, then $A \in DEC$.

• $\overline{A} \leq_m B$